Mechanics - PHY 6247
Solutions to HW 5

HWS5 prob 1 -
Le M be a symmetric square matrix

be the definiton we can write

(1) M =MT

part (a)

Let the eigenvalue equation be

(2) M|v; >= A;lv; > (here |v; > and < v;] is different notation for v} and v;")
(3) < UZ'|MT =< 'U2|>\:

Let’s use < v;| (1) |v; > with (2) and (3)

< Ui|<MT — M)|’Uj >= ()\: — )\J) < vi|vj >

(4) (Af — \j) < vi]v; >=0 from (1)

if § = j
(Af —A;) = 0= A\;=\;which proves that A C R
part(b)

If \; # A\ Eq. (4) tells us < v;Jv; >= 0. Thus eigenvectors with different eigenvalues are
orthogonal. The eigenvectors with identical eigenvalues lie in the subspace that’s orthogonal
to all the other eigenvectors. Thus they span this subspace. Since any vector in this subspace
is also an eigenvector with the same eigenvalue, we simply choose othogonal vecotors in this
subspace. Thus in the end all eigenvectors are orthogonal. We will also normalized to length
1.

After this is done we put the eigenvectors v; inside into the columns of matrix

D = (v1v3...0;,)

Then
MD = (A\viA205... A, 0p,)

and thus

DTMD = (0105...07)T (M0 Aot M) = | 0 Ay

So DM D is indeed diagonal.



HWS5 prob 2 -
{'1

The cylinder of radius b rolls without slipping.

Assuming the contact point between the two cylinders as centre of
instantaneous rotation, the velocity of the c.m of the cylinder of radius a
1S Ve, = agz'ﬁ

we could as well say that the c.m. rotates about the centre of the larger
cylinder as v, = (b+ a)fd

consequently (b + a)é = a¢

and ¢ = “7“’9

part(b)

T = iM% + r26%) + Lw?
r=0

w=¢

T = 1020 4 11

T = iM(a+b)%0% + (3 Ma?)¢? = 2M(a + b)?6*
V = Mg(a + b)cost
part(c)

OL/00 = Mg(a+ b)sind
4 [aL/aé] — OLJ00 = 0 = 2M(a + b)*) — Mg(a + b)sind
6 = %ﬁbsine

ALTERNATE APPROACH:
One could also incorporate the constraints with the help of Lagrange multipliers, and consider
3 coordinates (7,6, ¢). Then

M . I.
L= 7(7"2 +7260%) + §¢2 — Mgrcos@
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with the constraints f; =7 — R and fo = ¢ — %9, where we have defined R = a +b. Then

I = /(L(q, q) + Aafalq))dt

and its variation gives:

doL oL Ofa
%aqz‘ B (9611‘ A 8%’

Here we get .
Mi = Mr? — Mgcosf+ ), (la)

. . R
Mr20 4 2Mri0 = Mgrsind — —)\y  (2a)
a

Ip=X (3a)

Insert (3a) into (2a) and use ¢ = £6 (which comes from f, = 0) to get

a

. . 2 .
Mr*0 4 2Mri0 = Mgrsin — R—QIQ. (20)
a

From f; =0 we get r = R, r = 0, and thus
. Rz ..
MR?0 = MgRsinf — — 10, (2c)
a

If we set I to the same value as before we get the same EOM for 6.

But what is nice that we can also figure out WHEN the top cylinder would loose contact
with the bottom one. At the last point of contact the constraints are still valid so r = R
and 7 = 0. Thus (1a) becomes

A = Mgcosf — MRO*.  (1b)

Now, at the last point of contact the force of constraint A; (here the normal force) goes to
zero. So the angle of last contact is determined by

Mgcosf = MRH?.  (lc)

Of course 6 depends on initial conditions (A(t = 0), 8(t = 0)). But if we insert a particular
solution 6(t), we can find the § when contact is lost.
We can also use the conserved

E—1M2 1R2é2 M 0
—5( R* +1—)0" + Mgr cos?,

a

solve for 62, and insert this §2 into (1c) to find the angle of last conatct.



HW5 prob 3 -

Let T.,, = %M v?  be the kinetic energy partdue to CM motion. Then T = T, + & - &
where & is the due to rotation about the CM where the CM is at the origin. Here [ is a
moment of inertia tensor for rotations about an axis through the center of mass (CM).

Let the principal axes be denoted by X,Y, Z, and assume that the Z axis is parallel to the
principal axis through O and CM

The angular velocity & is due to changes in 6§ and ¢ (see picture for angles). Thus
=05+ ¢Z.
The projections onto the body fixed principal axes wy,wy,wyz are then

A .

wy=2-3=0%-Z+¢="0cos(n/2—a)+d=¢d+0sina
0z X = Qosacosgb

wy:Y-cﬁzéé Y =fcosasiné

(1) T = Tom + 2(Ixwk + Iywd + Izw}) = Tom +

Here Iy = Ix, because of axisymmetry.

Next note that the cone is rolling without slipping. This means that the point P is instan-
tanously at rest, i.e.

(Ix(wk +wy) + Izw3)

D=

10+ bd = 0.
From the picture we see that b/l = sin . Thus we get the relationship between fand ¢
( ) ¢ = _Sl’na
( ) ¢ o _szna

[Side note: Insert (2) into expressions for the omega components:
wy = ¢+ 0Osina = —0cos® o/ sin

wyx = 6 cosacos ¢
wy = 6 cos asin ¢

Consider ¢ = 0 and calculate & - £ Then

@& = (0 cos aX —0(cos® o/ sin ) Z)-& = 0 cos a(— sin o) —6(cos® a/ sin o) (cos o) = —6(cos o/ sin )



2= w% +w? 4+ w2 = 0%cos’ a/sin® a. This shows that & is along Z, i.e.

At the same time w
along the line OP.
I.e. we could have included the no sliping condition by assuming that the cone rotates about
OP at any instant. If we now draw the triangle coming from & = 62 + $Z and note that &
is along OP, we immediately see that |f]/|w| = tan . Le. for ¢ = 0 we could have found the
w components from:

wx = wsino
Wz = —W COoS «
w=~0/tan«

]
Also

I; = %Mb2 = f’—OMthanzoz
Ix = Iy = S M40 + h?)

. . . 2
T =Tom+ 3 | M4V + h?)0%cos’a + = Mb? (gb + 95ina> }

replace (3) ¢ = —=%— into the expression above

sino

T=Tm+3 3M17292005a+ Mh262cosa~l— Mb2<

T=Tem+ %Méz 2b%cos’a + h?cos*a + ib2 _cos’a 0‘ ]

sina

+ 952’na> 1

sino

T="T.,,+ %MW 3 wb*cos’a + gh*cos’a + - bQC"S a}

sin?o
T="T.,,+ %M@Q 3 62005 a+ 3 hzcos o+ bzgf;;ﬂ
T =T + 1 MG? %62 (cos a+ iifl—SQCiY) + Zh2cos? a]

substutitute b = htan «

T = Ton + §M6? [ 202 (sin®a + 2cos*a) + Shicos®a]

T =T. + SMO? [Z12 (1 + cos?a) + Sh2cos’a]

T="T.,+ 1M(92h2 [ (44 5cos®a)]

Sem = 3h the coordlnate of cm along the rotation axis through the CM
Ve, = i@hcosa

T=iM <%9003a> 1]\4(92h2 (2 (44 5cos’a)]

T = IM6?h? [ cos® a + 25 (4 + 5eos?a))]

T = 1M@Qh2 (2 (1+ 5003 a)}

T = 430M92h2( + 5cos?a)

M = pVol = :prh(htana)? = 3prh*tana®
T :%QQ'pﬂhE’tanza (1 + 5cos*a)

replace 6% = 4;‘;2

T =15 ’”Th tan®a (1 + 5eos’a)

the potential U = M gs.p,sina = %Mghsina
where s, = %h is being used




~ 40
= 2 MOh? (1 + 5eos’a)
L (0Lg) = ZMOh* (1 + 5cos*a)
4(QLy) — 0Ly =0
by plugging in the values we find
%M@h2 (1 + 5cos’a) =0
0 = const

L=T-U=2M§h?(1+5cos’a) — 3 Mghsina
0



HWS5 prob 4 -
Assuming a reference frame with O centered in pivot(the fixed point)
and Z normal to the paper as in the figure.

wzzé;wx:wy:O

The kinetic energy is given by T' = wy[pw; /2 = Tw?/2

where I = nglyn; = I, and wy, = |w|ny

T=1iI.6

U = —Mglcost

L=T-U= %[ZZQQ + Mglcost
OL; = 1I..0

%(Lﬂ)z@ﬁ
OLg = Mglsin® )
0 =—Mglsinf/1I,,

Alternative solution for prob 4
—
the torque 7 = R, X

= —mg (sz’n@% + cos@j’)

Rem = —1j
i J k R
7 = 0 —1 0 | = —IMgsindk
—mgsinf —mgcos 0
=1

hence 6 = —Mglsinf/1,,



HWS5 prob 5 -

5. Let’s follow the picture. Let us introduce an inertial coordinate system where the x-axis
points straight down and the y-axis to the right. The point O where the rod attaches to
the massive object moves with speed vp = 7. Thus its componts in our inertial coordinate
system are

Vor = —rfsin 0, vo,= 76 cos 0, wvo,=0.

The mass rotates about O with angular speed w = ¢. [The w contains ¢ alone (and not
also 6) because ¢ is measured with respect to the vertical (and not the rod), so that ¢ alone
describes how much the object is rotated.] Thus its componts in our inertial coordinate
system are

Woz = 07 Woy = 07 Woz = ¢
Let us denote the position vector of a mass point ¢ with repsect to O by 75, and the center
of mass position vector by R. Then the kinetic enery is

1 M ~ 1
T:§Ei:mi(17o+ﬁ><ﬁ)2:7U?)+Mﬁo-(a7><R)+§a7Tloa7

where I is the moment of inertia tensor for rotations about O. Now note that in our inertial
coordinate we have

R, =Zcos¢ —ysing, R,==Tsing+ycosp, R,=0.
Thus 7o - (@ x R) = rf¢(Z cos(d — ¢) + §sin(f — ¢)) so that we obtain

M .. .. 1 .
T= ?7’26’2 + MrOp(z cos(0 — ¢) + ysin(0 — ¢)) + §IOZZ¢>2

For the potential energy U we only need the hight of the CM above some zero level. We get
U = Mghea + const = —Mg [rcos @ + L cos(¢ + )],

where the constant | and « are | = /Z? + ¢, o = arctan(y/z). Since lcos(¢ + a) =
lcosacos ¢ — Isinasin ) and [ cosa = Z, [ sina = § we also have

U=—Mgl[rcos + xcosp — ysing|.

[ Note that we could replace the coordinate ¢ by v = ¢ + a. This is equivalent to ¢ — 7,
¢ —%9—0,a—0,T—[inboth T and U. |
As always we have L =T — U and thus obtain

OLs = Mr*0 + Mro [Zcos(0 — ¢) + Fsin(f — o))

4 (L) = Mr26 — Mré(0 — ¢) [zsin(0 — ¢) — geos(0 — ¢)]
0Ly = —Mregb [Zsin(0 — ¢) — ycos(0 — ¢)] — Mgrsin@
OLy = L..¢+ Mr0 [Tcos(0 — ¢) + ysin(0 — ¢)]

i (OLg) = 1.6 — Mrl(0 — ¢) [zsin(0 — ) — Feos(6 — ¢)]
0Ly = Mrog¢ [zsin(0 — ¢) — ycos(0 — ¢)] — Mglsin(¢ + )

8



eqn of motion are obtained by plugging the above values into the following
%(aLé) — 0Ly =0
5 (GLd;) — 0Ly =0

Alternative method

R; = Roy + 13 Vi=Voum + v
r; and v; are position and velocity relative to CM Rgys. Always:

M

mg
2"

%

Here: r; = D(¢)r;(t = 0), i.e. r; is a rotation around CM.

Thus )
[vi| = (¢)|ri(t = 0)]
and I
M o 1CM o
Hence M I
T = ?VC%M + %(@2

Ven can be expressed in terms of 6 and ¢. This will lead to the same answer.



