
Mechanics - PHY 6247

Solutions to HW 5

——————————–HW5 prob 1———————————-
Le M be a symmetric square matrix
be the definiton we can write
(1) M = MT

part (a)
Let the eigenvalue equation be
(2) M |vj >= λj|vj > (here |vj > and < vj| is different notation for v⃗j and v⃗j

†)
(3) < vi|MT =< vi|λ∗

i

Let’s use < vi| (1) |vj > with (2) and (3)
< vi|(MT −M)|vj >= (λ∗

i − λj) < vi|vj >
(4) (λ∗

i − λj) < vi|vj >= 0 from (1)
if i = j
(λ∗

i − λi) = 0 ⇒ λ∗=
i λiwhich proves that λ ⊆ R

part(b)
If λj ̸= λi Eq. (4) tells us < vi|vj >= 0. Thus eigenvectors with different eigenvalues are
orthogonal. The eigenvectors with identical eigenvalues lie in the subspace that’s orthogonal
to all the other eigenvectors. Thus they span this subspace. Since any vector in this subspace
is also an eigenvector with the same eigenvalue, we simply choose othogonal vecotors in this
subspace. Thus in the end all eigenvectors are orthogonal. We will also normalized to length
1.
After this is done we put the eigenvectors v⃗i inside into the columns of matrix

D = (v⃗1v⃗2...v⃗n)

Then
MD = (λ1v⃗1λ2v⃗2...λnv⃗n)

and thus

DTMD = (v⃗1v⃗2...v⃗n)
T (λ1v⃗1λ2v⃗2...λnv⃗n) =

 λ1 0 .
0 λ2 .
. . λn


So DTMD is indeed diagonal.
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——————————–HW5 prob 2———————————-

The cylinder of radius b rolls without slipping.
Assuming the contact point between the two cylinders as centre of
instantaneous rotation, the velocity of the c.m of the cylinder of radius a
is vcm = aϕ̇
we could as well say that the c.m. rotates about the centre of the larger
cylinder as vcm = (b+ a)θ̇
consequently (b+ a)θ̇ = aϕ̇
and ϕ̇ = a+b

a
θ̇

part(b)
T = 1

2
M(ṙ2 + r2θ̇2) + 1

2
Iω2

ṙ = 0
ω = ϕ̇
T = 1

2
Mr2θ̇2 + 1

2
Iω2

T = 1
2
M(a+ b)2θ̇2 + 1

2
(1
2
Ma2)ϕ̇2 = 3

4
M(a+ b)2θ̇2

V = Mg(a+ b)cosθ
part(c)
L = T − V = 3

4
M(a+ b)2θ̇2 −Mg(a+ b)cosθ

∂L/∂θ̇ = 3
2
M(a+ b)2θ̇

d
dt

(
3
2
M(a+ b)2θ̇

)
= 3

2
M(a+ b)2θ̈

∂L/∂θ = Mg(a+ b)sinθ
d
dt

[
∂L/∂θ̇

]
− ∂L/∂θ = 0 = 3

2
M(a+ b)2θ̈ −Mg(a+ b)sinθ

θ̈ = 2
3

g
a+b

sinθ

ALTERNATE APPROACH:
One could also incorporate the constraints with the help of Lagrange multipliers, and consider
3 coordinates (r, θ, ϕ). Then

L =
M

2
(ṙ2 + r2θ̇2) +

I

2
ϕ̇2 −Mgr cos θ
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with the constraints f1 = r −R and f2 = ϕ− R
a
θ, where we have defined R = a+ b. Then

I =

∫
(L(q, q̇) + λAfA(q))dt

and its variation gives:
d

dt

∂L

∂q̇i
=

∂L

∂qi
+ λA

∂fA
∂qi

Here we get
Mr̈ = Mrθ̇2 −Mg cos θ + λ1 (1a)

Mr2θ̈ + 2Mrṙθ̇ = Mgr sin θ − R

a
λ2 (2a)

Iϕ̈ = λ2 (3a)

Insert (3a) into (2a) and use ϕ̈ = R
a
θ̈ (which comes from f2 = 0) to get

Mr2θ̈ + 2Mrṙθ̇ = Mgr sin θ − R2

a2
Iθ̈. (2b)

From f1 = 0 we get r = R, ṙ = 0, and thus

MR2θ̈ = MgR sin θ − R2

a2
Iθ̈. (2c)

If we set I to the same value as before we get the same EOM for θ.
But what is nice that we can also figure out WHEN the top cylinder would loose contact
with the bottom one. At the last point of contact the constraints are still valid so r = R
and r̈ = 0. Thus (1a) becomes

λ1 = Mg cos θ −MRθ̇2. (1b)

Now, at the last point of contact the force of constraint λ1 (here the normal force) goes to
zero. So the angle of last contact is determined by

Mg cos θ = MRθ̇2. (1c)

Of course θ̇ depends on initial conditions (θ(t = 0), θ̇(t = 0)). But if we insert a particular
solution θ(t), we can find the θ when contact is lost.
We can also use the conserved

E =
1

2
(MR2 + I

R2

a2
)θ̇2 +Mgr cos θ,

solve for θ̇2, and insert this θ̇2 into (1c) to find the angle of last conatct.
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——————————–HW5 prob 3———————————-
Let Tcm = 1

2
Mv2cm be the kinetic energy partdue to CM motion. Then T = Tcm + ω⃗ · Iω⃗

where ω⃗ is the due to rotation about the CM where the CM is at the origin. Here I is a
moment of inertia tensor for rotations about an axis through the center of mass (CM).
Let the principal axes be denoted by X, Y, Z, and assume that the Z axis is parallel to the
principal axis through O and CM

The angular velocity ω⃗ is due to changes in θ and ϕ (see picture for angles). Thus

ω⃗ = θ̇ẑ + ϕ̇Ẑ.

The projections onto the body fixed principal axes ωX , ωY , ωZ are then

ωZ = Ẑ · ω⃗ = θ̇ẑ · Ẑ + ϕ̇ = θ̇ cos(π/2− α) + ϕ̇ = ϕ̇+ θ̇ sinα

ωX = X̂ · ω⃗ = θ̇ẑ · X̂ = θ̇ cosα cosϕ

ωY = Ŷ · ω⃗ = θ̇ẑ · Ŷ = θ̇ cosα sinϕ

(1) T = Tcm + 1
2
(IXω

2
X + IY ω

2
Y + IZω

2
Z) = Tcm + 1

2
(IX(ω

2
X + ω2

Y ) + IZω
2
Z)

Here IY = IX , because of axisymmetry.
Next note that the cone is rolling without slipping. This means that the point P is instan-
tanously at rest, i.e.

lθ̇ + bϕ̇ = 0.

From the picture we see that b/l = sinα. Thus we get the relationship between θand ϕ

(2) ϕ̇ = − θ̇
sinα

(3) ϕ = − θ
sinα

[Side note: Insert (2) into expressions for the omega components:

ωZ = ϕ̇+ θ̇ sinα = −θ̇ cos2 α/ sinα

ωX = θ̇ cosα cosϕ

ωY = θ̇ cosα sinϕ

Consider ϕ = 0 and calculate ω⃗ · x̂ Then

ω⃗·x̂ = (θ̇ cosαX̂−θ̇(cos2 α/ sinα)Ẑ)·x̂ = θ̇ cosα(− sinα)−θ̇(cos2 α/ sinα)(cosα) = −θ̇(cosα/ sinα)
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At the same time ω2 = ω2
X + ω2

Y + ω2
Z = θ̇2 cos2 α/ sin2 α. This shows that ω⃗ is along x̂, i.e.

along the line OP.
I.e. we could have included the no sliping condition by assuming that the cone rotates about
OP at any instant. If we now draw the triangle coming from ω⃗ = θ̇ẑ + ϕ̇Ẑ and note that ω⃗
is along OP, we immediately see that |θ̇|/|ω| = tanα. I.e. for ϕ = 0 we could have found the
ω components from:

ωX = ω sinα

ωZ = −ω cosα

ω = θ̇/ tanα

]
Also
IZ = 3

10
Mb2 = 3

10
Mh2 tan2 α

IX = IY = 3
80
M(4b2 + h2)

T = Tcm + 1
2
[IX(ω

2
X) + IZω

2
Z ]

T = Tcm + 1
2

[
3
80
M(4b2 + h2)θ̇2cos2α + 3

10
Mb2

(
ϕ̇+ θ̇sinα

)2
]

replace (3) ϕ = − θ
sinα

into the expression above

T = Tcm + 1
2

[
3
20
Mb2θ̇2cos2α + 3

80
Mh2θ̇2cos2α + 3

10
Mb2

(
− θ̇

sinα
+ θ̇sinα

)2
]

T = Tcm + 1
2
Mθ̇2

[
3
20
b2cos2α + 3

80
h2cos2α + 3

10
b2
(
− cos2α

sinα

)2
]

T = Tcm + 1
2
Mθ̇2

[
3
20
b2cos2α + 3

80
h2cos2α + 3

10
b2 cos4α

sin2α

]
T = Tcm + 1

2
Mθ̇2

[
3
20
b2cos2α + 3

80
h2cos2α + 3

10
b2 cos4α

sin2α

]
T = Tcm + 1

2
Mθ2

[
3
20
b2
(
cos2α + 2cos4α

sin2α

)
+ 3

80
h2cos2α

]
substutitute b = h tanα
T = Tcm + 1

2
Mθ̇2

[
3
20
h2 (sin2α + 2cos2α) + 3

80
h2cos2α

]
T = Tcm + 1

2
Mθ̇2

[
3
20
h2 (1 + cos2α) + 3

80
h2cos2α

]
T = Tcm + 1

2
Mθ̇2h2

[
3
80
(4 + 5cos2α)

]
scm = 3

4
h the coordinate of cm along the rotation axis through the CM

vcm = 3
4
θ̇hcosα

T = 1
2
M

(
3h
4
θ̇cosα

)2

+ 1
2
Mθ̇2h2

[
3
80
(4 + 5cos2α)

]
T = 1

2
Mθ̇2h2

[
9
16
cos2 α + 3

80
(4 + 5cos2α)

]
T = 1

2
Mθ̇2h2

[
3
20
(1 + 5cos2α)

]
T = 3

40
Mθ̇2h2 (1 + 5cos2α)

M = ρ V ol = 1
3
ρπh(htanα)2 = 1

3
ρπh3tanα2

T = 1
40
θ̇2ρπh5tan2α (1 + 5cos2α)

replace θ̇2 = 4π2

τ2

T = 1
10

ρπ3h5

τ2
tan2α (1 + 5cos2α)

the potential U = Mgscmsinα = 3
4
Mghsinα

where scm = 3
4
h is being used
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L = T − U = 3
40
Mθ̇2h2 (1 + 5cos2α)− 3

4
Mghsinα

∂Lθ̇ =
3
20
Mθ̇h2 (1 + 5cos2α)

d
dt
(∂Lθ̇) =

3
20
Mθ̈h2 (1 + 5cos2α)

∂Lθ = 0
d
dt
(∂Lθ̇)− ∂Lθ = 0

by plugging in the values we find
3
20
Mθ̈h2 (1 + 5cos2α) = 0

θ̇ = const
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——————————–HW5 prob 4———————————-
Assuming a reference frame with O centered in pivot(the fixed point)
and Z normal to the paper as in the figure.
ωz = θ̇;ωx = ωy = 0
The kinetic energy is given by T = ωkIklωl/2 = Iω2/2
where I = nkIklnl = Izz and ωk = |ω|nk

T = 1
2
Izz θ̇

2

U = −Mglcosθ
L = T − U = 1

2
Izz θ̇

2 +Mglcosθ

∂Lθ̇ = Izz θ̇
d
dt

(
Izz θ̇

)
= Izz θ̈

∂Lθ = Mglsinθ
d
dt
[∂Lθ̇]− ∂Lθ = 0 = Izz θ̈ −Mglsinθ

θ̈ = −Mglsinθ/Izz

Alternative solution for prob 4

the torque −→τ =
−−→
Rcm ×

−→
F

−→
F = −mg

(
sinθî+ cosθĵ

)
−−→
Rcm = −lĵ

−→τ =

 i j k
0 −l 0

−mgsinθ −mgcosθ 0

 = −lMgsinθk̂

−→τ = I
−̈→
θ

hence θ̈ = −Mglsinθ/Izz
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——————————–HW5 prob 5———————————-

5. Let’s follow the picture. Let us introduce an inertial coordinate system where the x-axis
points straight down and the y-axis to the right. The point O where the rod attaches to
the massive object moves with speed vO = rθ̇. Thus its componts in our inertial coordinate
system are

vOx = −rθ̇ sin θ, vOy = rθ̇ cos θ, vOz = 0.

The mass rotates about O with angular speed ω = ϕ̇. [The ω contains ϕ̇ alone (and not
also θ̇) because ϕ is measured with respect to the vertical (and not the rod), so that ϕ alone
describes how much the object is rotated.] Thus its componts in our inertial coordinate
system are

ωOx = 0, ωOy = 0, ωOz = ϕ̇.

Let us denote the position vector of a mass point i with repsect to O by r⃗i, and the center
of mass position vector by R⃗. Then the kinetic enery is

T =
1

2

∑
i

mi(v⃗O + ω⃗ × r⃗i)
2 =

M

2
v2O +Mv⃗O · (ω⃗ × R⃗) +

1

2
ω⃗T IOω⃗

where IO is the moment of inertia tensor for rotations about O. Now note that in our inertial
coordinate we have

Rx = x̄ cosϕ− ȳ sinϕ, Ry = x̄ sinϕ+ ȳ cosϕ, Rz = 0.

Thus v⃗O · (ω⃗ × R⃗) = rθ̇ϕ̇(x̄ cos(θ − ϕ) + ȳ sin(θ − ϕ)) so that we obtain

T =
M

2
r2θ̇2 +Mrθ̇ϕ̇(x̄ cos(θ − ϕ) + ȳ sin(θ − ϕ)) +

1

2
IOzzϕ̇

2

For the potential energy U we only need the hight of the CM above some zero level. We get

U = MghCM + const = −Mg [r cos θ + l cos(ϕ+ α)] ,

where the constant l and α are l =
√
x̄2 + ȳ2, α = arctan(ȳ/x̄). Since l cos(ϕ + α) =

l cosα cosϕ− l sinα sinϕ) and l cosα = x̄, l sinα = ȳ we also have

U = −Mg [r cos θ + x̄ cosϕ− ȳ sinϕ] .

[ Note that we could replace the coordinate ϕ by γ = ϕ + α. This is equivalent to ϕ → γ,
ϕ̇ → γ̇, ȳ → 0, α → 0, x̄ → l in both T and U . ]
As always we have L = T − U and thus obtain
∂Lθ̇ = Mr2θ̇ +Mrϕ̇ [x̄cos(θ − ϕ) + ȳsin(θ − ϕ)]
d
dt
(∂Lθ̇) = Mr2θ̈ −Mrϕ̈(̇θ − ϕ̇) [x̄sin(θ − ϕ)− ȳcos(θ − ϕ)]

∂Lθ = −Mrθ̇ϕ̇ [x̄sin(θ − ϕ)− ȳcos(θ − ϕ)]−Mgr sin θ
∂Lϕ̇ = Izzϕ̇+Mrθ̇ [x̄cos(θ − ϕ) + ȳsin(θ − ϕ)]
d
dt

(
∂Lϕ̇

)
= Izzϕ̈−Mrθ̈(̇θ − ϕ̇) [x̄sin(θ − ϕ)− ȳcos(θ − ϕ)]

∂Lϕ = Mrθ̇ϕ̇ [x̄sin(θ − ϕ)− ȳcos(θ − ϕ)]−Mgl sin(ϕ+ α)
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eqn of motion are obtained by plugging the above values into the following
d
dt
(∂Lθ̇)− ∂Lθ = 0

d
dt

(
∂Lϕ̇

)
− ∂Lϕ = 0

Alternative method

Ri = RCM + ri Vi = VCM + vi

ri and vi are position and velocity relative to CM RCM . Always:

T =
M

2
V 2
CM +

∑
i

mi

2
v2i

Here: ri = D(ϕ)ri(t = 0), i.e. ri is a rotation around CM.
Thus

|vi| = (ϕ̇)|ri(t = 0)|

and ∑
i

mi

2
v2i =

ICM

2
(ϕ̇)2

Hence

T =
M

2
V 2
CM +

ICM

2
(ϕ̇)2

VCM can be expressed in terms of θ and ϕ. This will lead to the same answer.
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