Mechanics - PHY 6247 Solutions to HW 4

```
orthogonality cond: A^T A = I = AA^T
A^T = A^{-1}
Let A, B ortogonal
AA^T = A^TA = I = BB^T = B^TB
recall: (XY)^T = Y^TX^T
(AB)(AB)^{T} = ABB^{T}A^{T} = AIA^{T} = AA^{T} = I
The above proves that
the product of two orthogonal matrices is ortogonal itself.
              ========Prob 2============
X' = BXB^{-1} similarity transformation for the matrix X
Tr(X') = Tr(BAB^{-1})
recall Tr(AB) = Tr(BA) \Rightarrow
Tr[B(XB^{-1})] = Tr[(XB^{-1})B] = Tr(X)
this proves that Tr(BXB^{-1}) = Tr(X)
or the trace of a matrix is invariant under similarity transformation
a matrix A is antisimmetric or skew symmetric if A = -A^T
Let's assume A' = BAB^{-1} where B is orthogonal BB^T = I. Then
(A')^T = (BAB^{-1})^T = (B^{-1})^T A^T B^T = BA^T B^T = -BAB^T = -A'.
Or using components, a matrix A is antisimmetric if
a_{ij} = -a_{ji}
prove that antysimmetry is preserved under a similarity transf
Let's assume A' = BAB^{-1} where B is orthogonal BB^T = I or
(bab^{-1})_{ij} = b_{ik}a_{kl}b_{li}^{-1}
b_{li}^{-1} = b_{jl}
(\ddot{b}ab^{-1})_{ij} = b_{ki}^{-1}(-a_{lk})b_{jl} = -b_{ki}^{-1}a_{lk}b_{jl} = -b_{jl}a_{lk}b_{ki}^{-1}
(bab^{-1})_{ij} = -(bab^{-1})_{ii}
which is the antysimmetric property is invariant under
similarity orthogonal transformation.
```

==Prob 4======

According to Euler's rotation theorem, any rotation may be described using three angles. If the rotations are written in terms of rotation matrices D, C, and B, then a general rotation A can be written as

$$A = B C D. (1)$$

we seek all the projection of $\dot{\phi} = \omega_{\phi}, \dot{\theta} = \omega_{\theta}, \dot{\psi} = \omega_{\psi}$ onto x,y,z the so called space frame.

the so cannot space frame.
$$\omega_x = \dot{\phi}_x + \dot{\theta}_x + \dot{\psi}_x$$

$$\omega_y = \dot{\phi}_y + \dot{\theta}_y + \dot{\psi}_y \quad (1)$$

$$\omega_z = \dot{\phi}_z + \dot{\theta}_z + \dot{\psi}_z$$
It is possible to see the projections from the picture.

 $\omega_{\phi}is$ parallel to z hence $\omega_{\phi} = \dot{\phi} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ ω_{θ} is parallel to the line of nodes and orthogonal to z

 ω_{θ} is parallel to the line of i.

hence $\omega_{\theta} = \dot{\theta} \begin{bmatrix} cos\phi \\ sin\phi \\ 0 \end{bmatrix}$ ω_{ψ} is parallel to z' hence $\omega_{\psi} = \dot{\psi} \begin{bmatrix} sin\theta sin\phi \\ -sin\theta cos\phi \\ cos\theta \end{bmatrix}$

now we can fill out (1) with the found projection.

$$\omega_x = 0 + \dot{\theta}\cos\phi + \dot{\psi}\sin\theta\sin\phi$$

$$\omega_x = 0 + \dot{\theta} \cos \phi + \dot{\psi} \sin \theta \sin \phi$$
$$\omega_y = 0 + \dot{\theta} \sin \phi - \dot{\psi} \sin \theta \cos \phi$$
$$\omega_z = \dot{\phi} + \dot{\psi} \cos \theta$$

$$\omega_z = \dot{\phi} + \dot{\psi}\cos\theta$$

Dogs throw up ball on earth. Coulder Coriolis force in frame of earth mā=mg-2m(axv)-max(axr) assume mg - mw x(wxi) = Vo= (o) mg = - (omg) in=(w) w= wcost, wy=wmno - 2m (w, V2 - w2 V4) = = - 2m (w2 Vx -0) 62000 - mg - 2m (0 - CyV) = - 2m (0- WV4) my = + mg = 0 - 2m (w vx - 0 m2 = - mg cost - 2m. 0 \$ g~10 52 1 W = 24 ~ 10/5 , Vmax= Vo~100 3 => Vmax =) 9 completely dominates by v term in 2 = -9 + 2 mg ~ - 9 =) 2 ~ Vo-gt =) time at 2 max: to = \forall 0 = inidially: x ~ w vo ~ 10 5 10 5 ~ 10 so x = -200(0, 1/2 - W2 /4) = -264 /2 22-9 =-9+2 Wy Vx W. - LOS. A. B

2 M 156 particles from goound: Vz = Vo-gt =) =, = Vot- =gt but to ground: 2,(T)=0 =) 0= 40T- 2gT =)7=3% X1= -2 Wy (Vo-gt) X, = - 2 wy (Vot - 2gt2) + 0 < - x(0) = 0 X, = - 2 wy (vot2 - 2gt3) + 0 < - x(0) = 0 ×(T) = -2wy (\frac{10}{2} 4 \frac{10^2}{9^2} - \frac{9}{6} 8 \frac{10^3}{9^3}) = -2wy (\frac{2}{3}) \frac{10}{9^2} 2nd part. from theight where v_z , of 1st part, was $0 \Rightarrow t_z = \frac{v_0}{g}$ $\Rightarrow z$, $(t) = v_0 \frac{v_0}{g} - \frac{1}{2}g \frac{v_0^2}{g^2} = \frac{1}{2}\frac{v_z^2}{g}$ time to fall down is to = 10? x = 26 and Vz = -9t X2 = - 200, (-9t) x2 = - Zu, (- = gf2) + 0 X2 = -244 (- 69+3) +0 x2(2) = - 2 wy (- + 9 403) = - 2 wy (- +) vo $\frac{x_2(t_2)}{x_1(T)} = \frac{-\frac{1}{6}}{\frac{2}{2}}$