
======================== PROB 1=====================================
V (r) = kln(r/L)
k = 900J ;L = 1m
angular momentum is l = 1kgm2/s

a) the plot
b) the minimim of the fictitious (effective) potential is when the motion is

on a circular orbit.
the fictitious potential is minimum when −∂V

′
(r)

∂r = 0 = f(r) + l2

mr3 =

−∂V (r)
∂r + l2

mr3 = 0 see Goldstein p77
−∂V (r)

∂r = −k
r = −l2

mr3

assuming l = 1kgm2/s; k = 900J ;m = 1kg
r = l√

mk
= 1

30m

c) absidal points are at the intersection of the energy with the fictitious
potential
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E = V
′
(r) + 1

2mṙ2 = kln(r/L) + 1
2

l2

mr2 + 1
2mṙ2

at the absidal points E = V
′
(r) for it is ṙ2 = 0

hence by solving this eq kln(r/L) + 1
2

l2

mr2 = E
we find the wanted values of r.
r1 = 0.01743m
r2 = 0.10282m
α = r1+r2

2 = 0.06013
e = r2−r2

r2+r1 = 0.71
======================== PROB 2=====================================
The energy of the planet before the impact is Ei =

1
2Mv2i − k

r where vi is
the planet’s initial speed, r = rmax and k = GM⊙M .

Ef = 1
2 (M + m)v2f − (M+m)k

Mr is the energy of the system (planet+comet)
after the impact

Since this system is on parabolic orbit Ef = 0 =⇒ v2f = 2k
Mr (1)

From the conservation of momentum we get (M+m)vf = Mvi+mvc, where
vc is the speed of the comet before impact.

Hence mvc = (M +m)vf −Mvi (2).
Next we need to find vi. Recall that the planet’s orbit before impact is given

by r(θ) = d/(1 + e cos θ), where the semi-latus rectum d = l2

Mk . (3)
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For θ = π we obtain the maxium distance r = d/(1−e), and thus d = (1−e)r
(4).

Using (3) and (4) we see l2 = (1− e)rMk (5).
Yet l is also l = rMvi, which we insert in (5) to obtain M2v2i = (1 −

e)Mk/r = (1− e)M2 k
Mr (6).

Using (2), the kinetric energy of the comet before impact is Tc =
1

2m (mvc)
2 =

1
2m [(M+m)2v2f+M2v2i −2(M+m)vfMvi] =

1
2m [(M+m)2 2k

Mr +(1−e)M2 k
Mr −

2(M+m)M
√

2k
Mr (1− e) k

Mr ] =
1

2m [2(M+m)2+(1−e)M2−2(M+m)M
√
2(1− e)] k

Mr =
k

2mMr [2(M +m)2 − 2
√
2(1− e)(M +m)M + (1− e)M2]

The comet’s total energy before impact is Ec = Tc − mk
Mr = Tc − k

2mMr2m
2.

Since m ≪ M we see that the second term is much smaller.
In fact if we let m/M → 0 we find

Ec = Tc =
k

2mMr
M2[2−2

√
2(1− e)+(1−e)] =

kM

2mr
[2−2

√
2(1− e)+(1−e)]

Using r = (1 + e)a and e = 1− α we find

Ec = Tc =
kM

2m(2− α)a
[2− 2

√
2α+ α].

Note: We had Tc =
kM
2mr [2− 2

√
2(1− e) + (1− e)]. If we set r = d/(1− e),

this becomes Tc = kM
2md (1 − e)(2 − 2

√
2(1− e) + (1 − e)). Since d is finite for

e → 1, we see that Tc → 0 if e → 1.
Note2: We could have gotten vi also from Ei = − k

2a = −(1 + e) k
2r and

the obvious Ei = 1
2Mv2i − k

r . We get again (6). Here the Ei = − k
2a comes

from adding the rmin and rmax found from the quadratic Eqn. Ei = M
2 (0 +

r2
(

l
mr2

)2
)− k

r that gives us rmin and rmax.
======================== PROB 3=====================================
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The plot shows the effective potential for different values of a 0.02 ≤ a ≤
0.06.

Notice how at low values of a = 0.02 a maximum starts to showup.
The indicated values k, l, a, r are all fictitious.
In nuclear physics a is the range of the nuclear force: ∼ 10−15m
V (r) = −k

r e
r
a

L = T − V
L = 1

2m(ṙ2 + r2θ̇2) + k
r e

− r
a

d
dt

(
∂Lθ̇

)
− ∂Lθ = 0

∂Lθ̇ = mr2θ̇;∂Lθ = 0
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hence d
dt

(
∂Lθ̇

)
= 0

and mr2θ̇ = const
(1) l = mr2θ̇angular momentum of the sytem
d
dt (∂Lṙ)− ∂Lr = 0

∂Lṙ = mṙ;∂Lr = mrθ̇2 − k
ar e

− r
a − k

r2 e
− r

a

d
dt (∂Lṙ) = mr̈

(2) mr̈ −mrθ̇2 +
(
r
a + 1

)
k
r2 e

− r
a = 0

(1) and (2) are the equations of motion
we can plug (1) into (2)
(3) mr̈ − l2

mr3 +
(
r
a + 1

)
k
r2 e

− r
a = 0

now that we know from (1) that l is a constant of the motion
so we can write the fictitious(effective) potential as
V

′
(r) = l2

2mr2 + V (r)

V
′
(r) = l2

2mr2 − k
r e

− r
a

E = 1
2mṙ2 + V

′
(r)

E = 1
2mṙ2 + l2

2mr2 − k
r e

− r
a

——————————————- prob 3part b)
use u = 1/r and show that d2u

dθ2 + u = F (u) = −(m/l2)d[V (1/u)]
du

du/dr = −1/r2 ;
du
dθ = − 1

r2
dr
dθ = − 1

r2
dr
dt

dt
dθ = − 1

r2 ṙ
1
θ̇

hence from (1) l
mr2 = θ̇

du
dθ = − 1

r2 ṙ
mr2

l = −m
l ṙ

d2u
dθ2 = dt

dθ
d
dt

(
−m

l ṙ
)
= −m

l
1
θ̇
r̈ = −m

l
¨mr2

l r̈
d2u
dθ2 = −m2r2

l2 r̈

r̈ = −d2u
dθ2

l2

m2r2 = −d2u
dθ2

l2

m2u
2 (6)

replacing (6) into (3) mr̈ − l2

mr3 +
(
r
a + 1

)
k
r2 e

− r
a = 0

−d2u
dθ2

l2

mu2- l
2

mu3 + d
drV (r) = 0 where we replaced d

drV (r) =
(
r
a + 1

)
k
r2 e

− r
a

−d2u
dθ2

l2

mu2- l
2

mu3 − u2 d
duV (u) = 0

d2u
dθ2 +u = −m

l2
d
duV (u) = F (u) which proves (i)

(ii) and (iii) Taylor expand..u = u0 + δu ; F (u0) + F
′
(u0)δu

plug the above into the eq of motion d2u
dθ2 +u = F (u) (7)

assume u” = d2u
dθ2 ; F

′
= d

duF

u”
0 + δ”u+ u0 + δu = F (u0) + F

′
(u0)δu

u”
0 = 0; for u0 = const

from EOM (7) u”
0 + u0 = F (u0) ⇒ 0 + u0 = F (u0)(8)

δu” + [1− F
′
(u0)]δu = F (u0)− u0 = 0

δu” = −[1− F
′
(u0)]δu

assuming β2 = [1− F
′
(u0)] (9)

d2u
dθ2 = −β2u
δ”u = −β2δu
the solution is δu = Acosβδθ
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in order to find β we can use (i)
V (u) =−kue

−1
au

F (u) = −m
l2

d
duV (u) =

(
−m

l2

) [
−k − ( 1

au2 )
ku
a

]
e

−1
au

F (u) = mk
l2

(
1 + 1

au

)
e

−1
au (10)

now recall (8) F (u0) = u0

F (u0) =
mk
l2

(
1 + 1

au0

)
e

−1
au0 = u0

e
−1
au0 = u0

l2

mk

(
1

1+ 1
au0

)
(11)

F
′
(u) = mk

l2 e
−1
au

{[ −1
au2

]
+

[
1 + 1

au

] (
1

au2

)}
F

′
(u) = mk

l2 e
−1
au

(
1

au3

)
= mk

a2u3l2 e
−1
au (12)

F
′
(u0) =

mk
a2u3

0l
2 e

−1
au0 (13)

plug (11) into (13)

F
′
(u0) =

mk
au3

0l
2
u0l

2

mk

(
1

1+ 1
au0

)
F

′
(u0) =

1
a2u2

0

(
au0

1+au0

)
= 1

au0(1+au0)

β2 = [1− F
′
(u0)] = 1− 1

au0(1+au0)

For r0/a ≪ 1 or au0 ≫ 1 we find β2 ≈ 1 − 1
(au0)2

= 1 − (r0/a)
2 and thus

β ≈ 1− 1
2 (r0/a)

2.
From β∆θ = 2π we obtain ∆θ = 2π/β ≈ 2π + π(r0/a)

2.
======================== PROB 4=====================================
given lunar month Tmoon = 27.3days ; earth period about the sun Te = 365.4

days
mean radii of the earth’s orbit about the sun rearth = 1.49× 1011m
mean radii of the moon’s orbit about the earth rmoon = 3.8× 108m
from Kepler III law the period of a planet is T = 2πa3/2

√
µ/k

assuming µes =
me×Ms

me+Ms
≈ Me the reduced mass of the sun , earth system

similarly assuming µme = mm×Me

mm+Me
≈ mm the reduced mass of the earth ,

moon system
k = GMm
aearth earth’s orbit semiaxis major about the sun
amoonmoon’s orbit semiaxis major about the earth
T 2
e =

4π2a3
e

GMs
, similarly T 2

m =
4πa3

m

GMe

T 2
m

T 2
e
=

(
am

ae

)3
Ms

Me

Ms

Me
=

(
ae

am

)3 (
Tm

Te

)2

plug in numbers to find that
Ms

Me
=

(
1.49×108

3.8×105

)3 (
27.3
365.4

)2
= 3.365× 105

======================== PROB 5=====================================
f(r) = −∂V

∂r
1
r2

d
dθ (

l
Mr2

dr
dθ )−

l2

Mr3 = f(r) (Goldstein 3.33)
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given r = cθ2 ⇒ dr
dθ = 2cθ

1
r2

d
dθ (

l
Mr2 2cθ)−

l2

Mr3 = f(r)
substitute r2 = c2θ4
1
r2

d
dθ (

2lcθ
Mc2θ4 )− l2

Mr3 = f(r)
1
r2

d
dθ (

−2l
Mcθ3 )− l2

Mr3 = f(r)
1
r2 (

−6l
Mcθ4 )− l2

Mr3 = f(r)
1
r2 (

−6l
Mcθ4 )− l2

r3 = f(r)
replace r = cθ2

−6cl
Mr4 − l2

Mr3 = f(r)
V (r) = Arn +Brm

−∂V
∂r = −Anrn−1 −Bmrm−1 = f(r) = −6cl

M r−4 − l2

M r−3

hence n = −3;m = −2
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