V(r) = kin(r/L)
k= 900J: L = 1m
angular momentum is [ = 1kgm?/s
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a) the plot ’ 02 0 08 a ;
b) the minimim of the fictitious (effective) potential is when the motion is
on a circular orbit.

the fictitious potential is minimum when _a\;T(r) =0=f(r)+

*6‘37@ + ,n,le,_g = 0 see Goldstein p77

V() —k . =12

or v T omr3
assuming [ = 1kgm?/s; k = 900J;m = 1kg
r=—-=1Xm
Vmk 30
c¢) absidal points are at the intersection of the energy with the fictitious
potential
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E=V'(r)+ tmi? = kin(r/L) + %Wlez + 2mi?
at the absidal points E = V' (r) for it is 72 = 0
hence by solving this eq kin(r/L) %éi? =F
we find the wanted values of 1.

rl =0.01743m

r2 = 0.10282m

o =132 = 0.06013
_r2—r2 __
=22 =011

The energy of the planet before the impact is E; = %M vZ — % where v; is
the planet’s initial speed, 7 = 74, and k = GMgM.

Ef = 3(M + m)vy — (MA;T)k is the energy of the system (planet+comet)
after the impact

Since this system is on parabolic orbit Ey =0 = v]% =2 (1)

From the conservation of momentum we get (M +m)vy = Mv; +mu,, where
v, is the speed of the comet before impact.

Hence mv, = (M + m)vy — Mv; (2).

Next we need to find v;. Recall that the planet’s orbit before impact is given

by 7(0) = d/(1 + ecosf), where the semi-latus rectum d = % (3)




For § = m we obtain the maxium distance » = d/(1—e¢), and thus d = (1—e)r
(4).
Using (3) and (4) we see [2 = (1 — e)rMk (5).

Yet [ is also [ = rMu;, which we insert in (5) to obtain M?v? = (1 —
e)Mk/r = (1—e)M?: (6).

Using (2), the kinetric energy of the comet before impact is T, = 5= (muv.)? =

30 (M +m)203 + M?v7 —2(M +m)vg Muv;] = A [(M+m)? 2+ (1—e)M? 55 —

2(M+m)M /25 (1 — e) 1] = s [2(M+m)2+(1—e) M2 =2(M+m)M\/2(1 — e)] i

Mr
g [2(M 4+ m)? = 2,/2(1 — ) (M +m)M + (1 — e) M?]
The comet’s total energy before impact is E, = T, — % =T, — 2mk]\4r 2m2.

Since m < M we see that the second term is much smaller.
In fact if we let m/M — 0 we find

k kM
E.=1T. = M?2—-2+/2(1 — l—e)]=——[2-2/2(1 — 1-—
c=Te= 5o M7 A—e)+1-e) =~ (I—e)+(1-e)
Using r = (1 + e)a and e = 1 — « we find
kM
E.=T.= ——[2—-2V2 .
¢ ¢ 2m(2—a)a[ a+al

Note: We had T, = 202 — 2,/2(1 —e) + (1 — ¢)]. If we set 7 = d/(1 —e),

this becomes T, = ;n—Md(l —e)(2—-2/2(1—e€) + (1 —e)). Since d is finite for
e — 1, we see that T, =+ 0 if e — 1.

Note2: We could have gotten v; also from E; = —2 = —(1 + e)4 and
the obvious E; = %MU? — % We get again (6). Here the E; = —% comes

from adding the 7, and 7,4, found from the quadratic Eqn. E; = %(0 +

2 .
r2 ( L ) ) — é that gives us 7in and 7maz.

Mr —
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Plot[Tahle[E— , {a, 0.02, 0.06, ,01}]1 {r, 0, .3}]
Out[TEl= 1.5
Out[T3l= 0.1
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The plot shows the effective potential for different values of a 0.02 < a <
0.06.

Notice how at low values of a = 0.02 a maximum starts to showup.

The indicated values k, [, a,r are all fictitious.

In nuclear physics a is the range of the nuclear force: ~ 10~°m



d —
hence 7 ((“)Lg) =0
and mr26 = const
(1) I = mr?fangular momentum of the sytem
4 (QL;) — 0L, =0 .
OL; = mr;0L, = mré? — a—kre*5 - T%e’g
4 (QL;) = mF
(2) mif —mré? + (£ +1) Lema =0
(1) and (2) are the equations of motion
we can plug (1) into (2)
(B)mi— 5+ (24+1) Ke v =0
now that we know from ( ) that 1 is a constant of the motion
so we can write the fictitious(effective) potential as

V(r) = g + V(1)
V/(r) =L, kg2

2mr? r
E:%mf +V()
1

:§mr +

R
a

_k
2777,7‘2 7€

prob 3part b)
use u = 1/r and show that 4 d92 +u=F(u) =—(m/12)% V(l/")]

du/dr = —1/r? ;
du _ _1dr _ _1drdi _ 1.1
o 72d6 — T rZTdide — 72y
hence from (1) —L; =4

mnr
du _ _1pm® _ mp
a0 = T T T .
dPu _dtd (_mpy_ _mly_ _ mmr?y
da2—dedt( 17’)— A
dzu__m27'27-;
02 — 2
: d?u 12 dPu 1% 2
P= - mnr = gt (0)

replacing (6) into (3) mi — +(Z+1)Lema =0

mr3

Py 22 —mu + LV (r) =0 where we replaced LV (r) = (£ +1) Ke~

R
—du L2 Lyd — u2 LV(u)=0

2 . .
‘;TZJru - duV( ) F(u) which proves (i) /
(ii) and (iii) Taylor expand..u = ug + du ; F(ug) + F (ug)du

. . 2u

plug the above into the eq of motion 4% +u = F(u) (7)
assume v = d92 ,F = d - F
ug + 6 u+ug + du = (uo) + F'(ug)du
ug = 0; for ug = const
from EOM (7) ug +ug = F(ug) = 0+ ug = F(ug)(8)
Su’ +[1— F (up)]du = F(ug) —up =0

oul = —[1— /( )]5u
assumlng B2 =1[1—F'(uo)] (9)
72 = _ﬂQ

gi(’u = —B3%6u

the solution is du = AcosB36



in order to find S we can use (i)

Viu) —kueww

Plu) = ~fgeV(w) = () [~ (Ge) ] e
F(u) =T (14 ) ew (10)

now recall (8) F(uo) UQ

Fup) = (1 + L

=1 2
euo :uoﬁ <1+1 )(11)

F'(u) = %’“ea5 {lae] + 1+ 55 (Ge))
F’(u): e
F'(u

0) =
plug (11) into (13)
uo) =

mk uol2 1
3712 _1
audl? mk 1+ Ty

! 1 au 1
F (UO) azug (1+a2¢0> = aug(1+aug)
2 _ ! _ 1
5 - [1 -r (UO)} =1- aug(14+auo)
For ro/a < 1 or aup > 1 we find 8% ~ 1

Br1—4(ro/a)?
From SAf = 27 we obtain A = 2r/3 ~ 21 + w(rg/a)?.

=1~ (r9/a)? and thus

_ 1
(auo)?

given lunar month T},.., = 27.3days ; earth period about the sun T, = 365.4
days

mean radii of the earth’s orbit about the sun reqrn = 1.49 x 101m

mean radii of the moon’s orbit about the earth 7m00n = 3.8 X 108m

from Kepler III law the period of a planet is T' = 27a’/?\/1/k

assuming fles = ﬂﬁj_MS ~ M, the reduced mass of the sun , earth system

similarly assuming pi,e = % ~ m,, the reduced mass of the earth ,
moon system

k=GMm

Qeqrth €arth’s orbit semiaxis major about the sun

Amoonoon’s orbit semiaxis major about the earth

2.3 3
2 _ 4rmta. . . 2 _ 4ma,,
T: = VAR similarly 77, = & A

plug in numbers to find that

3
M, _ (1.49x10% 27312 5
M, — (3.85105 ) (m) = 3.365 x 10




given r = cf? = dr = 2cb
2
%(%(MTQQCG) Mr3 —f(?“)
substitute 72 = c2294
L %(]\4223%4) - ]\gl[Ts = f(’f‘)
o (atee) = s = 1 (0)
k) — g = )
72(1\2554) — = 1)
replace r = cf?
_ 2
M67‘C4l - ]\/l[T3 = f(’f‘)
V(r) = Ar™ + Br™
%\; — —Anr"—Y — Bmym—1 = f(?”) _ —6cl,.—4 _ A
hence n = —=3;m = —2

I
HM‘HNHN




