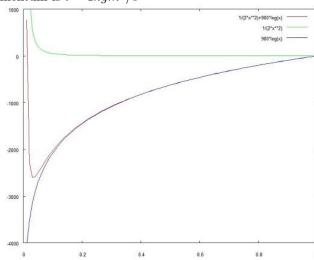
====== PROB 1=======

$$V(r) = k ln(r/L)$$

$$k = 900J; L = 1m$$

angular momentum is $l = 1kgm^2/s$



a) the plot

b) the minimim of the fictitious (effective) potential is when the motion is on a circular orbit.

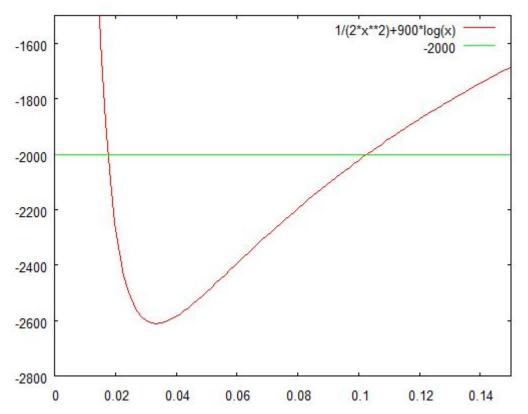
the fictitious potential is minimum when $-\frac{\partial V^{'}(r)}{\partial r}=0=f(r)+\frac{l^{2}}{mr^{3}}=-\frac{\partial V(r)}{\partial r}+\frac{l^{2}}{mr^{3}}=0$ see Goldstein p77 $-\frac{\partial V(r)}{\partial r}=\frac{-k}{r}=\frac{-l^{2}}{mr^{3}}$ assuming $l=1kgm^{2}/s; k=900J; m=1kg$ $r=\frac{l}{\sqrt{mk}}=\frac{1}{30}m$ c) absidal points are at the intersection of the energy with the fictitious extential

$$\frac{\partial r}{\partial r} = \frac{mr^3}{r} = \frac{-l^2}{mr^3}$$

assuming
$$l = 1kgm^2/s; k = 900J; m = 1kg$$

$$r = \frac{l}{\sqrt{mk}} = \frac{1}{30}m$$

potential



$$\begin{split} E &= V^{'}(r) + \tfrac{1}{2}m\dot{r}^2 = kln(r/L) + \tfrac{1}{2}\tfrac{l^2}{mr^2} + \tfrac{1}{2}m\dot{r}^2 \\ \text{at the absidal points } E &= V^{'}(r) \text{ for it is } \dot{r}^2 = 0 \\ \text{hence by solving this eq } kln(r/L) + \tfrac{1}{2}\tfrac{l^2}{mr^2} = E \end{split}$$

we find the wanted values of r.

$$r1 = 0.01743m$$

$$r2 = 0.10282m$$

$$\alpha = \frac{r1+r2}{2} = 0.06013$$

$$e = \frac{r2-r2}{r2+r1} = 0.71$$

$$e = \frac{r^2}{r^2 + r^2} = 0.71$$

==== PROB 2===

The energy of the planet before the impact is $E_i = \frac{1}{2}Mv_i^2 - \frac{k}{r}$ where v_i is the planet's initial speed, $r = r_{max}$ and $k = GM_{\odot}M$. $E_f = \frac{1}{2}(M+m)v_f^2 - \frac{(M+m)k}{Mr}$ is the energy of the system (planet+comet) after the impact

Since this system is on parabolic orbit $E_f=0 \Longrightarrow v_f^2=\frac{2k}{Mr}$ (1) From the conservation of momentum we get $(M+m)v_f=Mv_i+mv_c$, where v_c is the speed of the comet before impact.

Hence $mv_c = (M+m)v_f - Mv_i$ (2).

Next we need to find v_i . Recall that the planet's orbit before impact is given by $r(\theta) = d/(1 + e \cos \theta)$, where the semi-latus rectum $d = \frac{l^2}{Mk}$. (3)

For $\theta = \pi$ we obtain the maximu distance r = d/(1-e), and thus d = (1-e)r

Using (3) and (4) we see $l^2 = (1 - e)rMk$ (5).

Yet l is also $l = rMv_i$, which we insert in (5) to obtain $M^2v_i^2 = (1 - rMv_i)$

 $e)Mk/r = (1-e)M^2\frac{k}{Mr}$ (6). Using (2), the kinetric energy of the comet before impact is $T_c = \frac{1}{2m}(mv_c)^2 =$ $\frac{1}{2m}[(M+m)^2v_f^2 + M^2v_i^2 - 2(M+m)v_fMv_i] = \frac{1}{2m}[(M+m)^2\frac{2k}{Mr} + (1-e)M^2\frac{k}{Mr} - (1-e)M^$ $2(M+m)M\sqrt{\frac{2k}{Mr}(1-e)\frac{k}{Mr}}] = \frac{1}{2m}[2(M+m)^2 + (1-e)M^2 - 2(M+m)M\sqrt{2(1-e)}]\frac{k}{Mr} = \frac{1}{2m}[2(M+m)M\sqrt{2(1-e)}]\frac{k}{Mr} = \frac{1}{2m}[2(M+m)M\sqrt{2(1-e)}$ $\frac{k}{2mMr}[2(M+m)^2-2\sqrt{2(1-e)}(M+m)M+(1-e)M^2]$

The comet's total energy before impact is $E_c = T_c - \frac{mk}{Mr} = T_c - \frac{k}{2mMr} 2m^2$. Since $m \ll M$ we see that the second term is much smaller.

In fact if we let $m/M \to 0$ we find

$$E_c = T_c = \frac{k}{2mMr}M^2[2 - 2\sqrt{2(1-e)} + (1-e)] = \frac{kM}{2mr}[2 - 2\sqrt{2(1-e)} + (1-e)]$$

Using r = (1 + e)a and $e = 1 - \alpha$ we find

$$E_c = T_c = \frac{kM}{2m(2-\alpha)a}[2 - 2\sqrt{2\alpha} + \alpha].$$

Note: We had $T_c = \frac{kM}{2mr}[2-2\sqrt{2(1-e)}+(1-e)]$. If we set r=d/(1-e), this becomes $T_c = \frac{kM}{2md}(1-e)(2-2\sqrt{2(1-e)}+(1-e))$. Since d is finite for $e\to 1$, we see that $T_c\to 0$ if $e\to 1$.

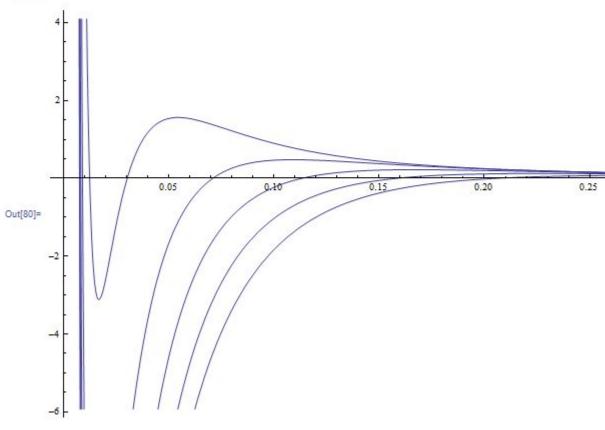
Note2: We could have gotten v_i also from $E_i = -\frac{k}{2a} = -(1+e)\frac{k}{2r}$ and the obvious $E_i = \frac{1}{2}Mv_i^2 - \frac{k}{r}$. We get again (6). Here the $E_i = -\frac{k}{2a}$ comes from adding the r_{min} and r_{max} found from the quadratic Eqn. $E_i = \frac{M}{2}(0 + \frac{1}{2})$ $r^2 \left(\frac{l}{mr^2}\right)^2 - \frac{k}{r}$ that gives us r_{min} and r_{max} .

$$\begin{aligned} & \ln[78] = \ k = 1.5 \\ & 1 = 0.1 \end{aligned}$$

$$& \text{Plot} \Big[\frac{1^2}{r^2} - \frac{k \star e^{-r/a}}{r}, \{a, 0.02, 0.06, .01\} \Big], \{r, 0, .3\} \Big]$$

Out[78]= 1.5

Out[79]= 0.1



The plot shows the effective potential for different values of a 0.02 \leq a \leq 0.06.

Notice how at low values of a = 0.02 a maximum starts to showup.

The indicated values k, l, a, r are all fictitious.

The indicated values
$$k, l, a, r$$
 are all fictitious. In nuclear physics a is the range of the nuclear force: $\sim 10^{-15}m$ $V(r) = -\frac{k}{r}e^{\frac{r}{a}}$ $L = T - V$ $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{k}{r}e^{-\frac{r}{a}}$ $\frac{d}{dt}\left(\partial L_{\dot{\theta}}\right) - \partial L_{\theta} = 0$ $\partial L_{\dot{\theta}} = mr^2\dot{\theta}; \partial L_{\theta} = 0$

$$\partial L_{\dot{\theta}} = mr^2 \dot{\theta}; \partial L_{\theta} = 0$$

```
hence \frac{d}{dt} (\partial L_{\dot{\theta}}) = 0
and mr^2 \dot{\theta} = const
   (1) l = mr^2\dot{\theta} angular momentum of the sytem
   \frac{d}{dt}(\partial L_{\dot{r}}) - \partial L_r = 0
    \partial L_{\dot{r}} = m\dot{r}; \partial L_{r} = mr\dot{\theta}^{2} - \frac{k}{ar}e^{-\frac{r}{a}} - \frac{k}{r^{2}}e^{-\frac{r}{a}} 
    \frac{d}{dt}\left(\partial L_{\dot{r}}\right) = m\ddot{r}
   (2) m\ddot{r} - mr\dot{\theta}^2 + \left(\frac{r}{a} + 1\right)\frac{k}{r^2}e^{-\frac{r}{a}} = 0
   (1) and (2) are the equations of motion
   we can plug (1) into (2)
   (3) m\ddot{r} - \frac{l^2}{mr^3} + \left(\frac{r}{a} + 1\right)\frac{k}{r^2}e^{-\frac{r}{a}} = 0 now that we know from (1) that l is a constant of the motion
   so we can write the fictitious(effective) potential as
 So we can write the fiction V'(r) = \frac{l^2}{2mr^2} + V(r)
V'(r) = \frac{l^2}{2mr^2} - \frac{k}{r}e^{-\frac{r}{a}}
E = \frac{1}{2}m\dot{r}^2 + V'(r)
E = \frac{1}{2}m\dot{r}^2 + \frac{l^2}{2mr^2} - \frac{k}{r}e^{-\frac{r}{a}}
 use u=1/r and show that \frac{d^2u}{d\theta^2}+u=F(u)=-(m/l^2)\frac{d[V(1/u)]}{du}
 du/dr = -1/r^2;
\frac{du}{d\theta} = -\frac{1}{r^2} \frac{dr}{d\theta} = -\frac{1}{r^2} \frac{dr}{dt} \frac{dt}{d\theta} = -\frac{1}{r^2} \dot{r} \frac{1}{\dot{\theta}}
hence from (1) \frac{l}{mr^2} = \dot{\theta}
\frac{du}{d\theta} = -\frac{1}{r^2} \dot{r} \frac{mr^2}{l} = -\frac{m}{l} \dot{r}
\begin{split} &\frac{-\bar{a}}{d\theta} = -\frac{\bar{r}}{r^2} r \frac{m}{l} = -\frac{m}{l} r \\ &\frac{d^2u}{d\theta^2} = \frac{dt}{d\theta} \frac{d}{dt} \left( -\frac{m}{l} \dot{r} \right) = -\frac{m}{l} \frac{1}{\dot{\theta}} \ddot{r} = -\frac{m}{l} \frac{m \dot{r}^2}{l} \ddot{r} \\ &\frac{d^2u}{d\theta^2} = -\frac{m^2 r^2}{l^2} \ddot{r} \\ \ddot{r} = -\frac{d^2u}{d\theta^2} \frac{l^2}{m^2 r^2} = -\frac{d^2u}{d\theta^2} \frac{l^2}{m^2} u^2 \text{ (6)} \\ &\text{replacing (6) into (3) } m\ddot{r} - \frac{l^2}{mr^3} + \left( \frac{r}{a} + 1 \right) \frac{k}{r^2} e^{-\frac{r}{a}} = 0 \\ &-\frac{d^2u}{d\theta^2} \frac{l^2}{m} u^2 - \frac{l^2}{m} u^3 + \frac{d}{dr} V(r) = 0 \text{ where we replaced } \frac{d}{dr} V(r) = \left( \frac{r}{a} + 1 \right) \frac{k}{r^2} e^{-\frac{r}{a}} \\ &-\frac{d^2u}{d\theta^2} \frac{l^2}{m} u^2 - \frac{l^2}{m} u^3 - u^2 \frac{d}{du} V(u) = 0 \\ &\frac{d^2u}{d\theta^2} + u = -\frac{m}{l^2} \frac{d}{du} V(u) = F(u) \text{ which proves (i)} \\ &\text{(ii) and (iii) Taylor expand } u = u + \delta u + F(u) + F'(u) \delta v \end{split}
   (ii) and (iii) Taylor expand..u = u_0 + \delta u; F(u_0) + F'(u_0)\delta u
  plug the above into the eq of motion \frac{d^2u}{d\theta^2} + u = F(u) (7)
   assume u'' = \frac{d^2u}{d\theta^2}; F' = \frac{d}{du}F
   u_{0}^{"} + \delta^{"}u + u_{0} + \delta u = F(u_{0}) + F'(u_{0})\delta u
  u_0^{"} = 0; for u_0 = const
from EOM (7) u_0^{"} + u_0 = F(u_0) \Rightarrow 0 + u_0 = F(u_0)(8)
\delta u_0^{"} + [1 - F'(u_0)]\delta u = F(u_0) - u_0 = 0
   \delta u" = -[1 - F'(u_0)]\delta u
  assuming \beta^{2} = [1 - F'(u_{0})] (9) \frac{d^{2}u}{d\theta^{2}} = -\beta^{2}u \delta^{2}u = -\beta^{2}\delta u
   the solution is \delta u = A\cos\beta\delta\theta
```

```
in order to find \beta we can use (i)
       V(u) = -kue^{\frac{-1}{au}}
     F(u) = -\frac{m}{l^2} \frac{d}{du} V(u) = \left(-\frac{m}{l^2}\right) \left[-k - \left(\frac{1}{au^2}\right) \frac{ku}{a}\right] e^{\frac{-1}{au}}
F(u) = \frac{mk}{l^2} \left(1 + \frac{1}{au}\right) e^{\frac{-1}{au}} (10)
now recall (8) F(u_0) = u_0
F(u_0) = \frac{mk}{l^2} \left(1 + \frac{1}{au_0}\right) e^{\frac{-1}{au_0}} = u_0
      e^{\frac{-1}{au_0}} = u_0 \frac{l^2}{mk} \left( \frac{1}{1 + \frac{1}{au_0}} \right) (11)
     F'(u) = \frac{mk}{l^2} e^{\frac{-1}{au}} \left\{ \left[ \frac{-1}{au^2} \right] + \left[ 1 + \frac{1}{au} \right] \left( \frac{1}{au^2} \right) \right\}
F'(u) = \frac{mk}{l^2} e^{\frac{-1}{au}} \left( \frac{1}{au^3} \right) = \frac{mk}{a^2 u^3 l^2} e^{\frac{-1}{au}} (12)
F'(u_0) = \frac{mk}{a^2 u_0^3 l^2} e^{\frac{-1}{au_0}} (13)
      plug (11) into (13)
      F'(u_0) = \frac{mk}{au_0^3 l^2} \frac{u_0 l^2}{mk} \left( \frac{1}{1 + \frac{1}{au_0}} \right)
     F'(u_0) = \frac{1}{a^2 u_0^2} \left(\frac{au_0}{1+au_0}\right) = \frac{1}{au_0(1+au_0)}
\beta^2 = [1 - F'(u_0)] = 1 - \frac{1}{au_0(1+au_0)}
For r_0/a \ll 1 or au_0 \gg 1 we find \beta^2 \approx 1 - \frac{1}{(au_0)^2} = 1 - (r_0/a)^2 and thus
\beta \approx 1 - \frac{1}{2}(r_0/a)^2.
      From \beta \Delta \theta = 2\pi we obtain \Delta \theta = 2\pi/\beta \approx 2\pi + \pi (r_0/a)^2.
       ======= PROB 4======
       given lunar month T_{moon} = 27.3 \text{days}; earth period about the sun T_e = 365.4
days
       mean radii of the earth's orbit about the sun r_{earth} = 1.49 \times 10^{11} m
       mean radii of the moon's orbit about the earth r_{moon} = 3.8 \times 10^8 m
       from Kepler III law the period of a planet is T = 2\pi a^{3/2} \sqrt{\mu/k}
      assuming \mu_{es} = \frac{m_e \times M_s}{m_e + M_s} \approx M_e the reduced mass of the sun , earth system
      similarly assuming \mu_{me} = \frac{m_m \times M_e}{m_m + M_e} \approx m_m the reduced mass of the earth
moon system
       k = GMm
       a_{earth} earth's orbit semiaxis major about the sun
       a_{moon}moon's orbit semiaxis major about the earth
      T_e^2 = \frac{4\pi^2 a_e^3}{GM_s}, similarly T_m^2 = \frac{4\pi a_m^3}{GM_e}
      \frac{T_m^2}{T_e^2} = \left(\frac{a_m}{a_e}\right)^3 \frac{M_s}{M_e}
     \frac{1}{r^2} \frac{d}{d\theta} \left( \frac{l}{Mr^2} \frac{dr}{d\theta} \right) - \frac{l^2}{Mr^3} = f(r) \text{ (Goldstein 3.33)}
```

given
$$r = c\theta^2 \Rightarrow \frac{dr}{d\theta} = 2c\theta$$

 $\frac{1}{r^2} \frac{d}{d\theta} (\frac{l}{Mr^2} 2c\theta) - \frac{l^2}{Mr^3} = f(r)$
substitute $r^2 = c^2\theta^4$
 $\frac{1}{r^2} \frac{d}{d\theta} (\frac{2lc\theta}{Mc^2\theta^4}) - \frac{l^2}{Mr^3} = f(r)$
 $\frac{1}{r^2} \frac{d}{d\theta} (\frac{-2l}{Mc\theta^3}) - \frac{l^2}{Mr^3} = f(r)$
 $\frac{1}{r^2} (\frac{-6l}{Mc\theta^4}) - \frac{l^2}{Mr^3} = f(r)$
 $\frac{1}{r^2} (\frac{-6l}{Mc\theta^4}) - \frac{l^2}{r^3} = f(r)$
replace $r = c\theta^2$
 $\frac{-6cl}{Mr^4} - \frac{l^2}{Mr^3} = f(r)$
 $V(r) = Ar^n + Br^m$
 $-\frac{\partial V}{\partial r} = -Anr^{n-1} - Bmr^{m-1} = f(r) = \frac{-6cl}{M}r^{-4} - \frac{l^2}{M}r^{-3}$
hence $n = -3; m = -2$