
==============PROBLEM 1===============
We can solve this in at least 2 ways. We first present a way where we adapt

the coordinate system to simplify the problem:
*Method 1:
In spherical coordinates on the surface of the unit sphere, we have
ds2 = dθ2 + sin2θdϕ2

S =
´ 2
1
ds =

´ √
1 + sin2θϕ′2dθ

ϕ′ = dϕ
dθ

The Euler conditions to minimize S
d
dθ

(
∂F
∂ϕ′

)
− ∂F

∂ϕ = 0

in this case
F =

√
1 + sin2θϕ′2

∂F
∂ϕ′ =

ϕ′sin2θ√
1+sin2θϕ′2

∂F
∂ϕ = 0

hence d
dθ

(
∂F
∂ϕ′

)
= 0 and ∂F

∂ϕ′ = k = constant

ϕ′sin2θ√
1+sin2θϕ′2

= k

We have to solve this equation, starting at θ0 with some value for
ϕ and ϕ′ . To simplify the situation we rotate our cordinate system
such that ϕ′ = 0 at θ0 . Then it follows that k = 0 and the differential
equation simplifies to

ϕ′sin2θ√
1+sin2θϕ′2

= 0

which yields
ϕ′ = 0.
We can integrate the latter and obtain ϕ = const, which is obviously
a great circle.
.
*Method 2:
In spherical coordinates on the surface of a sphere of radis R, we have
ds2 = R2dθ2 +R2sin2θdϕ2

S =
´ 2
1
ds = R

´ √
1 + sin2θϕ′2dθ

ϕ′ = dϕ
dθ

The Euler conditions to minimize S
d
dθ

(
∂F
∂ϕ′

)
− ∂F

∂ϕ = 0

in this case
F = R

√
1 + sin2θϕ′2

∂F
∂ϕ′ =

Rϕ′sin2θ√
1+sin2θϕ′2

∂F
∂ϕ = 0

hence d
dθ

(
∂F
∂ϕ′

)
= 0 and ∂F

∂ϕ′ = constant

ϕ′sin2θ√
1+sin2θϕ′2

= k where R is factorized in the constant k

by squaring the former expression we get
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ϕ′2sin4θ = k2(1 + sin2θϕ′2)
ϕ′2(sin4θ − k2sin2θ) = k2

ϕ′2 = k2

sin4(θ)(1−k2 1
sin2θ

)

dϕ = k×csc2θ√
1−k2csc2θ

dθ

Let’s apply the following substitution:
1 + cot2θ = csc2θ
ϕ =
´

kcsc2θdθ

k
√

1
k2 −(1+cot2θ)

⇒
´

csc2θdθ√
1
k2 −1−cot2θ)

let’s assign a2 = k2

1−k2

ϕ =
´

csc2θdθ√
1
a2 −cot2θ)

= a
´

csc2θdθ√
1−a2cot2θ)

when we assign
(1) x = cotθ ⇒ dx = −csc2θdθ
ϕ = a

´ −dx√
1−a2x2

the solution to the above integral is ϕ(x) = −sin−1 (ax) + β
we then transform back to θ by pluggin in x = cotθ from 1)
ϕ(θ) = −sin−1(acotθ) + β ⇒ sin(β − ϕ) = acotθ
cotθ = 1

a (sinβcosϕ− sinϕcosβ)
assign c1 = 1

asinβ; c2 = 1
acosβ

cotθ = c1cosϕ− c2sinϕ
let’s multiply by rsinθ =⇒ rcosθ = r(c1sinθcosϕ− c2sinθsinϕ)
which in spherical coordinates
x = rsinθcosϕ; y = rsinθsinϕ; z = rcosθ
is a plane through the center of the coordinate axis.
Ax+By + cz = 0
In conclusion by applying the Euler eqn we’ve found that
the condition for S to be an extremum (supposedly a minimum)
is that the function F satisfies the eqn of a plane through the center
of a sphere. Hence the shortest path is always a great circle through the
points A,B produced by the intersection of such a plane with a
sphere of radius R centered at the origin.

==============PROBLEM 2===============
the action is S =

´
Ldt where L is the Lagrangian. Let’s define the constant

velocities
v0 = x−x0

t−t0

v1 = x1−x
t1−t

part a)
The Lagrangian is
L = 1

2mv20 if the time is between t0 and t
L = 1

2mv21 if the time is between t and t1

S =
´
Ldt = 1

2mv20(t− t0) +
1
2mv21(t1 − t) = 1

2m
[
(x−x0)
t−t0

2
+ (x1−x)

t1−t

2]
part b)
in order to minimize the action:
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dS
dx = 0 ⇒ m

[
(x−x0)
t−t0

− (x1−x)
t1−t

]
= 0

hence v1 = v0
==============PROBLEM 3===============

part 3a)
Assuming c is the speed of light in a vacuum

tAB =

√
(x−xA)2+y2

A

c is the travel time from A to B

tBC =

√
(xC−x)2+y2

C

c is the travel time from B to C
according to Fermat the travel time is a minimum for light
dt
dx = 0 ⇒ dt

dx = d
dx (tAB + tBC) ;=

1
c

[
x−xA√

(x−xA)2+y2
A

− x−xC√
(xC−x)2+y2

C

]
= 0

sin(θi) =
x−xA√

(x−xA)2+y2
A

sin(θr) =
x−xc√

(x−xc)2+y2
c

from which it is clear that θi = θr.
part 3b)
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tAB =

√
(x−xA)2+y2

A

c/ni
is the travel time from A to B in the medium i

tBC =

√
(xC−x)2+y2

C

c/nr
is the travel time from B to C in the mediun r

dt
dx = 0 Fermat principle[

(x−xA)ni√
(x−xA)2+y2

A

− (x−xC)nr√
(xC−x)2+y2

C

]
= 0

nisinθi = nrsinθr
which is the Snell’s law
==============PROBLEM 4===============
The Lagrangian of the particle moving in the uniform gravitational field is
L = 1

2m
(
dz
dt

)2 −mgz
z(t) = z0 + v0t+

1
2at

2 and
(1) z = z0when t = 0 ;
(2) z = z1when t = t1
part (4a)
We replace (1) and get
(3) z(t) = v0t+

1
2at

2

(4) d
dtz(t) = v0 + at

plug in (3),(4) in the Lagrangian
L = 1

2m (v0 + at)
2 −mg

(
v0t+

1
2at

2
)

S =
´ t1
t0

Ldt = m
´ t1
t0

[
1
2 (v0 + at)

2 − g
(
v0t+

1
2at

2
)]

dt

S = m
´ t1
t0

[
1
2

(
v20 + a2t2 + 2v0at

)
− gv0t− 1

2gat
2
]
dt
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S = 1
2m
´ t1
t0

[
v20 + 2v0(a− g)t+ a(a− g)t2

]
dt

S = 1
2m

[
v20(t1 − t0) + v0(a− g)(t1 − t0)

2 + 1
3a(a− g)(t31 − t0)

3
]

t0 = 0 is replaced in the expression
we can replace v0by noting that v0 = z(t)

t − 1
2at

now recall (2) and replace z = z1 ⇒ v0 = z1
t1

− 1
2at1

for mere convenience t1, z1 its replaced with t, z, and
S = 1

2m
[
( zt −

1
2at)

2t+ ( zt −
1
2at)(a− g)t2 + 1

3a(a− g)t3
]

S = 1
2m

[
( zt −

1
2at)t

[
( zt −

1
2at) + (a− g)t

]
+ 1

3a(a− g)t3
]

S = 1
2m

[
( zt −

1
2at)t

[
( zt −

1
2at+ (a− g)t

]
+ 1

3a(a− g)t3
]

S = 1
2m

{
(z − 1

2at
2)

[
( zt −

1
2at+ (a− g)t

]
+ 1

3a(a− g)t3
}

S = 1
2m

[
z2

t − 1
2azt+ (a− g)zt− 1

2azt+
1
4a

2t3 − 1
2a(a− g)t3 + 1

3a(a− g)t3
]

S = 1
2m

[
z2

t − gzt+ 1
4a

2t3 − 1
6a(a− g)t3

]
S = 1

2m
[
z2

t − gzt+ 1
4a

2t3 − 1
6a

2t3 − 1
6agt

3
]

S = 1
2m

{
z2

t − gzt− ( 1
12a

2 + 1
6ag)t

3
}

part (4b)
The way is to minimize S is:
dS
da = 0 = a

6 − g
6 ⇒ a = −g

==============PROBLEM 5===============
We must Minimize I =

´
2πyds

ds =
√
1 + x′2dy

I = 2π
´
y
√
1 + x′2dy

F = y
√
1 + x′2

the Euler eq is
d
dy

(
∂F
∂x′

)
− ∂F

∂x = 0

since ∂F
∂x = 0 =⇒ ∂F

∂x′ = const
∂F
∂x′ =

yx′
√
1+x′2 = c

x′ = dx
dy = c√

y2−c2

x = c× cosh−1(yc ) + b

y = c× cosh(x−b
c )
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==============PROBLEM 6===============

ds = rdθ =⇒ ds− rdθ = 0
f = s− rθ = 0
the kinetic energy of the disk T = 1

2 (mṡ2 + Iθ̇2)
the potential energy U = −mgz = −mgs sinα
L = T + U
I =
´
(L+ λf)dt

1 equation of constraint gives one λ
d
dt (

∂L
∂ṡ )−

∂L
∂s = λ∂f

∂s
d
dt (

∂L
∂θ̇

)− ∂L
∂θ = λ∂f

∂θ
d
dt (

∂L
∂ṡ ) = ms̈; ∂L

∂s = mg sinα
d
dt (

∂L
∂θ̇

) = Iθ̈; ∂L
∂θ = 0

∂f
∂s = 1
∂f
∂θ = −r
d
dt (

∂L
∂θ̇

)− ∂L
∂θ = −rλ =⇒ Iθ̈ = −λr =⇒ λ = − Iθ̈

r

by plugging in I = 1
2mr2 and rθ̈ = s̈ we get

λ = − 1
2ms̈

d
dt (

∂L
∂ṡ )−

∂L
∂s = λ =⇒ ms̈−mg sinα = − 1

2ms̈
3
2ms̈ = mg sinα =⇒ s̈ = 2

3g sinα
the force of constraint is λ = − 1

2ms̈ = − 1
3mg sinα

6


