======PROBLEM 1=========

We can solve this in at least 2 ways. We first present a way where we adapt the coordinate system to simplify the problem:

*Method 1:

In spherical coordinates on the surface of the unit sphere, we have

In spherical coordinates on the surface
$$ds^2 = d\theta^2 + sin^2\theta d\phi^2$$

$$S = \int_1^2 ds = \int \sqrt{1 + sin^2\theta \phi'^2} d\theta$$

$$\phi' = \frac{d\phi}{d\theta}$$
The Euler conditions to minimize S
$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) - \frac{\partial F}{\partial \phi} = 0$$
in this case.

$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) - \frac{\partial F}{\partial \phi} = 0$$

in this case

$$\begin{split} F &= \sqrt{1 + sin^2\theta\phi'^2} \\ \frac{\partial F}{\partial \phi'} &= \frac{\phi' sin^2\theta}{\sqrt{1 + sin^2\theta\phi'^2}} \\ \frac{\partial F}{\partial \phi} &= 0 \end{split}$$

$$\frac{\partial F}{\partial \phi} = 0$$

hence
$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) = 0$$
 and $\frac{\partial F}{\partial \phi'} = k = constant$

$$\frac{\phi' \sin^2 \theta}{\sqrt{1 + \sin^2 \theta \phi'^2}} = k$$

hence $\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) = 0$ and $\frac{\partial F}{\partial \phi'} = k = constant$ $\frac{\phi' sin^2 \theta}{\sqrt{1 + sin^2 \theta \phi'^2}} = k$ We have to solve this equation, starting at θ_0 with some value for ϕ and ϕ' . To simplify the situation we rotate our coordinate system such that $\phi' = 0$ at θ_0 . Then it follows that k = 0 and the differential equation simplifies to

$$\frac{\phi' \sin^2 \theta}{\sqrt{1 + \sin^2 \theta \phi'^2}} = 0$$
which yields
$$\phi' = 0.$$

We can integrate the latter and obtain $\phi = const$, which is obviously a great circle.

*Method 2:

In spherical coordinates on the surface of a sphere of radis R, we have

$$\begin{split} ds^2 &= R^2 d\theta^2 + R^2 sin^2 \theta d\phi^2 \\ S &= \int_{\frac{1}{2}}^2 ds = R \int \sqrt{1 + sin^2 \theta \phi'^2} d\theta \end{split}$$

$$b' = \int_1 ds = h \int \sqrt{1 + s}$$

 $b' = \frac{d\phi}{1}$

$$arphi' = rac{-r}{d heta}$$

The Euler condition

 $\phi' = \frac{d\phi}{d\theta}$ The Euler conditions to minimize S $\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) - \frac{\partial F}{\partial \phi} = 0$

$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) - \frac{\partial F}{\partial \phi} = 0$$

in this case

$$F = R\sqrt{1 + sin^2\theta\phi'^2}$$

$$F = R\sqrt{1 + sin^{2}\theta\phi}$$

$$\frac{\partial F}{\partial \phi'} = \frac{R\phi' sin^{2}\theta}{\sqrt{1 + sin^{2}\theta\phi'^{2}}}$$

$$\frac{\partial F}{\partial \phi} = 0$$

$$\frac{\partial F}{\partial \phi} = 0$$

hence
$$\frac{d}{d\theta} \left(\frac{\partial F}{\partial \phi'} \right) = 0$$
 and $\frac{\partial F}{\partial \phi'} = constant$

$$\frac{\phi' \sin^2 \theta}{\sqrt{1 + \sin^2 \theta \phi'^2}} = k \text{ where R is factorized in the constant k}$$

by squaring the former expression we get

```
\phi'^2 \sin^4 \theta = k^2 (1 + \sin^2 \theta \phi'^2)
\phi^{-sin^{4}\theta} = k^{2}(1 + sin^{2}\theta\phi^{-s})
\phi'^{2}(sin^{4}\theta - k^{2}sin^{2}\theta) = k^{2}
\phi'^{2} = \frac{k^{2}}{sin^{4}(\theta)(1 - k^{2}\frac{1}{sin^{2}\theta})}
d\phi = \frac{k \times csc^{2}\theta}{\sqrt{1 - k^{2}csc^{2}\theta}}d\theta
Let's expectation of the single states of the single states are single states.
Let's apply the following substitution:

1 + \cot^2\theta = \csc^2\theta
\phi = \int \frac{k\csc^2\theta d\theta}{k\sqrt{\frac{1}{k^2} - (1 + \cot^2\theta)}} \Rightarrow \int \frac{\csc^2\theta d\theta}{\sqrt{\frac{1}{k^2} - 1 - \cot^2\theta}}
let's assign a^2 = \frac{k^2}{1 - k^2}
\phi = \int \frac{\csc^2\theta d\theta}{\sqrt{\frac{1}{a^2} - \cot^2\theta}} = a \int \frac{\csc^2\theta d\theta}{\sqrt{1 - a^2\cot^2\theta}}
when we assign
 (1) x = \cot\theta \Rightarrow dx = -\csc^2\theta d\theta

\phi = a \int \frac{-dx}{\sqrt{1 - a^2 x^2}}
 the solution to the above integral is \phi(x) = -\sin^{-1}(ax) + \beta
 we then transform back to \theta by pluggin in x = \cot \theta from 1)
 \phi(\theta) = -\sin^{-1}(a\cot\theta) + \beta \Rightarrow \sin(\beta - \phi) = a\cot\theta
 \cot \theta = \frac{1}{a} (\sin \beta \cos \phi - \sin \phi \cos \beta)
assign c1 = \frac{1}{a} \sin \beta; c2 = \frac{1}{a} \cos \beta
 \cot\theta = c1\cos\phi - c2\sin\phi
 let's multiply by rsin\theta \Longrightarrow rcos\theta = r(c1sin\theta cos\phi - c2sin\theta sin\phi)
 which in spherical coordinates
 x = rsin\theta cos\phi; y = rsin\theta sin\phi; z = rcos\theta
 is a plane through the center of the coordinate axis.
 Ax + By + cz = 0
 In conclusion by applying the Euler eqn we've found that
 the condition for S to be an extremum (supposedly a minimum)
 is that the function F satisfies the eqn of a plane through the center
 of a sphere. Hence the shortest path is always a great circle through the
 points A,B produced by the intersection of such a plane with a
 sphere of radius R centered at the origin.
```

======PROBLEM 2==========

the action is $S = \int Ldt$ where L is the Lagrangian. Let's define the constant velocities

$$v_0 = \frac{x - x_0}{t - t_0}$$

$$v_1 = \frac{x_1 - x}{t_1 - t}$$
part a)
The Lagrangian is
$$L = \frac{1}{2}mv_0^2$$
 if the ti

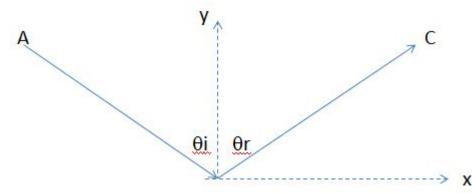
 $L = \frac{1}{2}mv_0^2$ if the time is between t_0 and t $L = \frac{1}{2}mv_1^2$ if the time is between t and t_1

 $S = \int_{0}^{2\pi} L dt = \frac{1}{2} m v_0^2 (t - t_0) + \frac{1}{2} m v_1^2 (t_1 - t) = \frac{1}{2} m \left[\frac{(x - x_0)^2}{t - t_0} + \frac{(x_1 - x)^2}{t_1 - t} \right]$

in order to minimize the action:

$$\frac{dS}{dx} = 0 \Rightarrow m \left[\frac{(x-x_0)}{t-t_0} - \frac{(x_1-x)}{t_1-t} \right] = 0$$
 hence $v_1 = v_0$

=========PROBLEM 3========



part 3a)

$$t_{AB} = \frac{\sqrt{(x-x_A)^2 + y_A^2}}{c}$$
 is the travel time from A to B

part 3a) Assuming c is the speed of light in a vacuum
$$t_{AB} = \frac{\sqrt{(x-x_A)^2 + y_A^2}}{c} \text{ is the travel time from A to B}$$

$$t_{BC} = \frac{\sqrt{(x_C-x)^2 + y_C^2}}{c} \text{ is the travel time from B to C}$$
 according to Fermat the travel time is a minimum for light
$$\frac{dt}{dx} = 0 \Rightarrow \frac{dt}{dx} = \frac{d}{dx} \left(t_{AB} + t_{BC} \right); = \frac{1}{c} \left[\frac{x-x_A}{\sqrt{(x-x_A)^2 + y_A^2}} - \frac{x-x_C}{\sqrt{(x-x)^2 + y_C^2}} \right] = 0$$

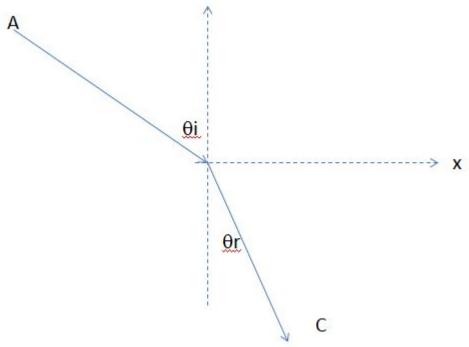
$$sin(\theta_i) = \frac{x-x_A}{\sqrt{(x-x_A)^2 + y_A^2}}$$

$$sin(\theta_r) = \frac{x-x_C}{\sqrt{(x-x_C)^2 + y_C^2}}$$
 from which it is clear that $\theta_i = \theta_r$.

$$sin(\theta_i) = \frac{x - x_A}{\sqrt{(x - x_A)^2 + y_A^2}}$$

$$sin(\theta_r) = \frac{\sqrt{(x-x_c)^2 + y_A^2}}{\sqrt{(x-x_c)^2 + y_c^2}}$$

part 3b)



$$\begin{split} t_{AB} &= \frac{\sqrt{(x-x_A)^2 + y_A^2}}{c/n_i} \text{ is the travel time from A to B in the medium i} \\ t_{BC} &= \frac{\sqrt{(x_C-x)^2 + y_C^2}}{c/n_r} \text{ is the travel time from B to C in the mediun r} \\ \frac{dt}{dx} &= 0 \text{ Fermat principle} \\ \left[\frac{(x-x_A)n_i}{\sqrt{(x-x_A)^2 + y_A^2}} - \frac{(x-x_C)n_r}{\sqrt{(x_C-x)^2 + y_C^2}} \right] = 0 \\ n_i sin\theta_i &= n_r sin\theta_r \end{split}$$

which is the Snell's law

$$L = \frac{1}{2}m \left(\frac{dz}{dt}\right)^2 - mgz$$

$$z(t) = z_0 + v_0 t + \frac{1}{2}at^2 \text{ and}$$
(1) $z = z_0 \text{ when } t = 0$;
(2) $z = z_1 \text{ when } t = t_1$
part (4a)

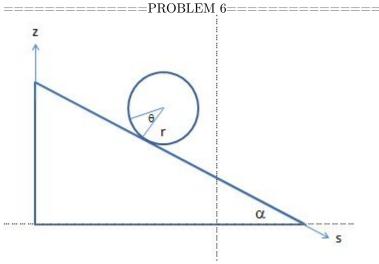
We replace (1) and get
(3) $z(t) = v_0 t + \frac{1}{2}at^2$
(4) $\frac{d}{dt}z(t) = v_0 + at$
plug in (3),(4) in the Lagrangian
$$L = \frac{1}{2}m \left(v_0 + at\right)^2 - mg \left(v_0 t + \frac{1}{2}at^2\right)$$

$$S = \int_{t_0}^{t_1} Ldt = m \int_{t_0}^{t_1} \left[\frac{1}{2} \left(v_0 + at\right)^2 - g \left(v_0 t + \frac{1}{2}at^2\right)\right] dt$$

$$S = m \int_{t_0}^{t_1} \left[\frac{1}{2} \left(v_0^2 + a^2 t^2 + 2v_0 at\right) - gv_0 t - \frac{1}{2}gat^2\right] dt$$

```
S = \frac{1}{2}m \int_{t_0}^{t_1} \left[ v_0^2 + 2v_0(a - g)t + a(a - g)t^2 \right] dt

S = \frac{1}{2}m \left[ v_0^2(t_1 - t_0) + v_0(a - g)(t_1 - t_0)^2 + \frac{1}{3}a(a - g)(t_1^3 - t_0)^3 \right]
 t_0 = \tilde{0} is replaced in the expression
we can replace u_0 by noting that u_0 = \frac{z(t)}{t} - \frac{1}{2}at now recall (2) and replace z = z_1 \Rightarrow v_0 = \frac{z_1}{t_1} - \frac{1}{2}at_1 for mere convenience t_1, z_1 its replaced with t, z, and S = \frac{1}{2}m\left[(\frac{z}{t} - \frac{1}{2}at)^2t + (\frac{z}{t} - \frac{1}{2}at)(a-g)t^2 + \frac{1}{3}a(a-g)t^3\right] S = \frac{1}{2}m\left[(\frac{z}{t} - \frac{1}{2}at)t\left[(\frac{z}{t} - \frac{1}{2}at) + (a-g)t\right] + \frac{1}{3}a(a-g)t^3\right] S = \frac{1}{2}m\left[(\frac{z}{t} - \frac{1}{2}at)t\left[(\frac{z}{t} - \frac{1}{2}at + (a-g)t\right] + \frac{1}{3}a(a-g)t^3\right] S = \frac{1}{2}m\left\{(z - \frac{1}{2}at^2)\left[(\frac{z}{t} - \frac{1}{2}at + (a-g)t\right] + \frac{1}{3}a(a-g)t^3\right\}
 S = \frac{1}{2}m\left[\frac{z^2}{t} - \frac{1}{2}azt + (a-g)zt - \frac{1}{2}azt + \frac{1}{4}a^2t^3 - \frac{1}{2}a(a-g)t^3 + \frac{1}{3}a(a-g)t^3\right]
S = \frac{1}{2}m \left[ \frac{z^2}{t} - gzt + \frac{1}{4}a^2t^3 - \frac{1}{6}a(a-g)t^3 \right]
 S = \frac{1}{2}m \left[ \frac{z^2}{t} - gzt + \frac{1}{4}a^2t^3 - \frac{1}{6}a^2t^3 - \frac{1}{6}agt^3 \right]
 S = \frac{1}{2}m\left\{\frac{z^2}{t} - gzt - (\frac{1}{12}a^2 + \frac{1}{6}ag)t^3\right\}
 part (4b)
 The way is to minimize S is:
 We must Minimize I = \int 2\pi y ds
  ds = \sqrt{1 + x'^2} dy
 I = 2\pi \int y\sqrt{1 + x'^2} dy
  F = y\sqrt{1 + x'^2}
 the Euler eq is
the Euler eq is
\frac{d}{dy} \left( \frac{\partial F}{\partial x'} \right) - \frac{\partial F}{\partial x} = 0
\text{since } \frac{\partial F}{\partial x} = 0 \Longrightarrow \frac{\partial F}{\partial x'} = const
\frac{\partial F}{\partial x'} = \frac{yx'}{\sqrt{1+x'^2}} = c
x' = \frac{dx}{dy} = \frac{c}{\sqrt{y^2 - c^2}}
x = c \times cosh^{-1}(\frac{y}{c}) + b
y = c \times cosh(\frac{x-b}{c})
```



$$\begin{split} ds &= rd\theta \Longrightarrow ds - rd\theta = 0 \\ f &= s - r\theta = 0 \\ \text{the kinetic energy of the disk } T = \frac{1}{2}(m\dot{s}^2 + I\dot{\theta}^2) \\ \text{the potential energy } U = -mgz = -mgs\sin\alpha \\ L &= T + U \\ I &= \int (L + \lambda f)dt \\ \text{1 equation of constraint gives one } \lambda \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{s}}) - \frac{\partial L}{\partial s} = \lambda \frac{\partial f}{\partial s} \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) - \frac{\partial L}{\partial \theta} = \lambda \frac{\partial f}{\partial \theta} \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) - \frac{\partial L}{\partial \theta} = \lambda \frac{\partial L}{\partial \theta} \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) &= I\ddot{\theta}; \frac{\partial L}{\partial \theta} = 0 \\ \frac{\partial f}{\partial s} &= 1 \\ \frac{\partial f}{\partial s} &= 1 \\ \frac{\partial f}{\partial \theta} &= -r \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) - \frac{\partial L}{\partial \theta} = -r\lambda \Longrightarrow I\ddot{\theta} = -\lambda r \Longrightarrow \lambda = -\frac{I\ddot{\theta}}{r} \\ \text{by plugging in } I &= \frac{1}{2}mr^2 \text{ and } r\ddot{\theta} = \ddot{s} \text{ we get} \\ \lambda &= -\frac{1}{2}m\ddot{s} \\ \frac{d}{dt}(\frac{\partial L}{\partial \dot{s}}) - \frac{\partial L}{\partial s} = \lambda \Longrightarrow m\ddot{s} - mg\sin\alpha = -\frac{1}{2}m\ddot{s} \\ \frac{3}{2}m\ddot{s} &= mg\sin\alpha \Longrightarrow \ddot{s} = \frac{2}{3}g\sin\alpha \\ \text{the force of constraint is } \lambda &= -\frac{1}{2}m\ddot{s} = -\frac{1}{3}mg\sin\alpha \end{split}$$