We can solve this in at least 2 ways. We first present a way where we adapt
the coordinate system to simplify the problem:

*Method 1:

In spherical coordinates on the surface of the unit sphere, we have

ds? = df? + sin0dg?

S = ff ds = [\/1+ sin20¢"2d0

¢ =%

= 40

The Euler conditions to minimize S
d (OF ) _ 9F _

6 \ 0¢’ 26

in this case

F = /14 sin20¢"
OF __ ¢’ sin’6

o9 \/ 1+sin20¢’2

9L =0

0o

hence d% (gg,) =0 and g(f, = k = constant
¢’ sin26

\/ 1+sin20¢’?

We have to solve this equation, starting at 6y with some value for

¢ and ¢’ . To simplify the situation we rotate our cordinate system

such that ¢’ = 0 at 6y . Then it follows that k¥ = 0 and the differential

equation simplifies to
¢’ sin?0

\/ 1+sin20¢’2

which yields

@' =0.

We can integrate the latter and obtain ¢ = const, which is obviously

a great circle.

*Method 2:
In spherical coordinates on the surface of a sphere of radis R, we have
ds? = R%2d#? + R%sin20d¢?

S=[lds=R[/T+ sin®042do

o =5

= 40

The Euler conditions to minimize S
d (8F) _ 9F _

a0 \ 9¢’ ¢

in this case

F = R\/1+ sin20¢'?

OF _ _ R¢/sin0

99 vV 1+sin26¢'2

Ge =0

hence d% (gf,) =0 and gf, = constant
¢ sin?0

\/H-TW = k where R is factorized in the constant k

by squaring the former expression we get



#"?sin0 = k2(1 + sin?0¢'?)
" (sin*0 — k?sin?0) = k2

2 k?
¢/ - sin4(t9)(1 k2 - 29)
do = 2t

Let’s apply the following substitution:
1+ cot?d = 05620

¢ f kesc?0do f csc20do
k'\/ —(14+cot20) \/——1 cot20)
_ K
let’s assign a? Tz
csc20do csc20do

¢ f \/ —cot?0) f \/1 a?cot?6)
when we assign
(1) = coth = dx = —csc?0do

=aof e

a“x

the solution to the above integral is ¢(x) = —sin~! (az) + 8
we then transform back to 6 by pluggin in z = cotf from 1)
o) = —sin_l(acotﬁ) + 8 = sin(8 — ¢) = acotb
cotl = (smﬂcosqS - smcz)cosﬁ)
assign cl = asmﬁ, 2= 70055
coth = clcosp — c2sing
let’s multiply by rsin = rcosf = r(clsinfcosp — c2sinfsing)
which in spherical coordinates
x = rsinfcosp;y = rsinfsing; z = rcosf
is a plane through the center of the coordinate axis.
Ax+By+cz=0
In conclusion by applying the Euler eqn we’ve found that
the condition for S to be an extremum (supposedly a minimum)
is that the function F satisfies the eqn of a plane through the center
of a sphere. Hence the shortest path is always a great circle through the
points A B produced by the intersection of such a plane with a
sphere of radius R centered at the origin.

the action is § = f Ldt where L is the Lagrangian. Let’s define the constant
velocities

—_ T—Xo
Yo = T4,

— T1—T
V1=
part a)

The Lagrangian is
L = ma? if the time is between ¢, and ¢

L= %mv% if the time is between ¢ and ¢,

2
S = [ Ldt = 3mv3(t — to) + 3mvi(ty —t) = 3m % + (2 f)
part b)
in order to minimize the action:



dx
hence v = vy
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part 3a)
Assuming c is the speed of light in a vacuum
V(@w—za)2+y% . .
tap = Y———_——= is the travel time from A to B
\/ﬁ . .
tgc = M is the travel time from B to C
according to Fermat the travel time is a minimum for light
dt dt d 1 T—T r—x
L =0= L=t t j= = 4 - > =0
da d da (tap +tpc); ¢/ (@—za)2+y3 V(zc—z)2+y2
; ) — T—TA

sini) = o
sin(0,) = LZc

Vi(z—ze)>+yZ

from which it is clear that 6; = 0,..
part 3b)



\ ¢

=4

V(—za)?+y3

tap = is the travel time from A to B in the medium i

c/n;

— 2 2
tpc = W is the travel time from B to C in the mediun r
dt

7 = 0 Fermat principle

(x—zA)Ni _ (z—zc)n,
Vet | Jeo-a) g
n;sinb; = n,.sind,

which is the Snell’s law

The Lagrangian of the particle moving in the uniform gravitational field is
dz\2
L= %m (E) —mgz
2(t) = 20 + vot + 3at? and
(1) z = zowhen t =0 ;
(2) z =z when t = t;
part (4a)
We replace (1) and get
(3) 2(t) = vot + at?
(4)d2(t) =vo +at
plug in (3),(4) in the Lagrangian
L=1im(vy+ at)® — my (vot + Lat?)
t1 t1 2
S = fu Lt =m [ |4 (vo + at)? — g (vot + Jat?) | dt
ty

S=m to

[% (vg +a%t? + 2voat) — guot — %gatz] dt



S=1 f [0 + 2vo(a — g)t + ala — g)t?] dt

S = %m [Uo(tl — to) -+ ”Uo((l — g)(tl — t0)2 + éa(a — g)(t? — to)g}
to = 0 is replaced in the expression

we can replace vgby noting that vy = Z(tt) - fat

now recall (2) and replace z = z; = vg = & — 7at1

for mere convenience tq, z; its replaced Wlth t z, and

S=3m[(%-iat)*t+ (% — zat)(a—g)t* + 3a ( - 9)t?]

S=1im ;(g — gat)t [(2 — Fat) + (a — g)t] + 2a(a — g)t?]
S=1im|(2-1Lat)t[(2-Lat+ (a—g)t] + 1a(a—g)t3]
S:%m{_(z—%atQ) [(2 = tat + (a — g)t] + 2a(a — g)t*}
S=1im % — 3azt + (a — g)zt — 3azt + 3a*t> — Ja(a — g)t* + 3a(a — g)t?’}

S=1im »i — gzt + 2a?t3 — ta(a — g)tﬂ
S = %m [% — gzt + %a2t3 — %a2t3 — %agtﬂ

S = %m{ 2 — gzt — (112a2+éag)t3}

part (4Db)
The way is to minimize S is:
%:O:%—fia——g

We must Minimize I = [ 2myds
ds =1+ x'2dy

I =27 [yV1+ 2"dy
F=y/ita?

the Euler eq is

bl - -0

x = cx cosh™'(¥
y = ¢ x cosh(*




ds=rdd = ds —rdf =0

f=s—r0=0

the kinetic energy of the disk 7' = % (ms* + 162)
the potential energy U = —mgz = —mgssina
L=T+U

I=[(L+Af)dt

1 equation of constraint gives one A

i(cLL) _ 9L _ \9f

dt \ 95 ds — 7' 0s

i(tLL) _ 9L _ \9f

AP

?(5) = m§;6¥ =mgsina

ailop) =10: 55 =
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00

d (9L L j_ __I6
E(%)_W_ rA= 10 = ")\r:>)\— -
by plu%ging in = %mr2 and rf = § we get
A= —5m5

4(9L) — IL = X\ = m§ —mgsina = —Imé
sms§ =mgsina = § = %gsina

the force of constraint is A = —%m(é = —%mg sin v



