Prove that the magnitude R of the position vector for the center of mass from an arbitrary origin is given by the equation

$$M^2 R^2 = M \sum_i m_i r_i^2 - 1/2 \sum_{ij} m_i m_j r_{ij}^2$$

1)
$$M\overrightarrow{R} = \sum_{i} m_{i} \overrightarrow{r_{i}}$$

2) $M^{2}R^{2} = (\sum_{i} m_{i} \overrightarrow{r_{i}})(\sum_{i} m_{i} \overrightarrow{r_{i}}) = \sum_{ij} m_{i} m_{j} \overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}}$
3) $\|\overrightarrow{r_{i}} - \overrightarrow{r_{j}}\|^{2} = r_{ij}^{2} = r_{i}^{2} + r_{j}^{2} - 2\overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}}$
4) $\frac{1}{2} (r_{i}^{2} + r_{j}^{2} - r_{ij}^{2}) = \overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}}$
now let's plug 4) into 2) to substitute for $\overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}}$
 $M^{2}R^{2} = \frac{1}{2} \sum_{ij} m_{i} m_{j} (r_{i}^{2} + r_{j}^{2} - r_{ij}^{2})$
 $M^{2}R^{2} = \frac{1}{2} \sum_{ij} m_{i} m_{j} r_{i}^{2} + \frac{1}{2} \sum_{ij} m_{i} m_{j} r_{j}^{2} - \frac{1}{2} \sum_{ij} m_{i} m_{j} r_{ij}^{2}$
 $M^{2}R^{2} = \frac{1}{2} \sum_{j} m_{j} \sum_{i} m_{i} r_{i}^{2} + \frac{1}{2} \sum_{i} m_{i} \sum_{i} m_{j} r_{j}^{2} - \frac{1}{2} \sum_{ij} m_{i} m_{j} r_{ij}^{2}$
 $M^{2}R^{2} = \frac{1}{2} M \sum_{i} m_{i} r_{i}^{2} + \frac{1}{2} M \sum_{i} m_{j} r_{j}^{2} - \frac{1}{2} \sum_{ij} m_{i} m_{j} r_{ij}^{2}$
So $a = 1$, $b = -1/2$, and $r_{ij}^{2} = \|\overrightarrow{r_{i}} - \overrightarrow{r_{j}}\|^{2}$

2. Two wheels of radius *a* are mounted on the ends of a common axle of length *b* such that the wheels rotate independently. The whole combination rolls without slipping on a plane. Show that there are two nonholonomic equations of constraint,

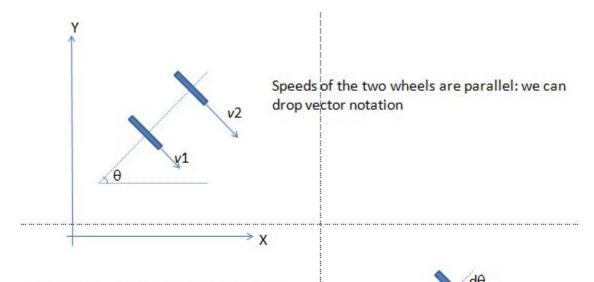
$$\cos \theta \, dx + \sin \theta \, dy = 0$$

 $\sin \theta \, dx - \cos \theta \, dy = a/2 (d\phi + d\phi')$

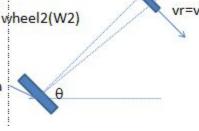
(where θ , ϕ , and ϕ ' are similar in meaning as for the case of a simple disk rolling on a plane and x and y are the coordinates of a point on the axle midway between the two wheels) and one holonomic equation of constraint

$$\theta = C - a/b (\phi - \phi')$$

where C is a constant.



We could consider wheel1(W1) as if it were the center of instantaneous rotation, while wheel2(W2) Rotates about W1 at a speed vr = v2-v1



Center of rotation

We can use the following 5 coordinates to describe the system: center of mass (x,y), orientation angle (θ) , angles ϕ_1,ϕ_2 We have the 4 constraints:

$$\overrightarrow{v_1} = -a\dot{\phi}_1 \hat{r_\perp} (1) \text{ and } \overrightarrow{v_2} = -a\dot{\phi}_2 \hat{r_\perp} (2),$$

where $\hat{r} = (\cos\Theta, \sin\Theta), \hat{r_\perp} = (-\sin\Theta, \cos\Theta)$

Now
$$\overrightarrow{v_{00}} = \overrightarrow{v_1} + \overrightarrow{v_2} \propto \hat{r_1}$$
 and thus $\overrightarrow{v_{00}} \cdot \hat{r_2} = 0$ (3)

Now
$$\overrightarrow{v_{CM}} = \frac{\overrightarrow{v_1} + \overrightarrow{v_2}}{2} \propto \hat{r_{\perp}}$$
 and thus $\overrightarrow{v_{CM}} \cdot \hat{r} = 0$ (3)
Also $\overrightarrow{v_2} - \overrightarrow{v_1} \propto \hat{r_{\perp}}$ and thus $\overrightarrow{v_2} - \overrightarrow{v_1} = b\dot{\Theta}\hat{r_{\perp}}$ (5).

In addition using (1) and (2) we find $\overrightarrow{v_{CM}} \cdot \hat{r_{\perp}} = -\frac{a\dot{\phi}_1 + a\dot{\phi}_2}{2}$ (6). Now note that $\overrightarrow{v_{CM}} = (\dot{x}, \dot{y})$.

Therefore (3) yields $\dot{x}\cos\Theta + \dot{y}\sin\Theta = 0$ (3b),

while (6) gives
$$-\dot{x}\sin\Theta + \dot{y}\cos\Theta = -\frac{a}{2}(\dot{\phi}_1 + \dot{\phi}_2)$$
 (6b).

From (5) we get (using (1) and (2))
$$-a(\dot{\phi}_2 - \dot{\phi}_1) = b\dot{\Theta}$$
 (5b).

(3b) and (6b) can be written as

$$dx \cos \Theta + dy \sin \Theta = 0$$
 and $dx \sin \Theta - dy \cos \Theta = \frac{a}{2}(d\phi_1 + d\phi_2)$.

(5b) can be integrated to yield
$$a(\phi_1 - \phi_2) = b\Theta - C$$
. qed.

4. If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, show by direct substitution that

$$L' = L + \frac{dF(q_1, \dots, q_n, t)}{dt}$$

also satisfies Lagrange's equations where F is any arbitrary, but differentiable, functions of its

$$1)\frac{d}{dt}\left(\frac{\partial L'}{\partial \dot{q}_i}\right) - \frac{\partial L'}{\partial q_i} = 0$$

$$\frac{\partial L'}{\partial \dot{a_i}} = \frac{\partial}{\partial \dot{a_i}} \left(L + \frac{dF}{dt} \right) = \frac{\partial L}{\partial \dot{a_i}} + \frac{\partial \dot{F}}{\partial \dot{a_i}}$$

$$\frac{\partial L'}{\partial \dot{q}_i} = \frac{\partial}{\partial \dot{q}_i} \left(L + \frac{dF}{dt} \right) = \frac{\partial L}{\partial \dot{q}_i} + \frac{\partial \dot{F}}{\partial \dot{q}_i}$$
Note: $\dot{F} = \frac{dF}{dt} = \sum_i \frac{\partial F}{\partial q_i} \dot{q}_i + \frac{\partial F}{\partial t}$. Thus $\frac{\partial \dot{F}}{\partial \dot{q}_i} = \frac{\partial F}{\partial q_i}$ as well as $\frac{\partial}{\partial q_j} \frac{dF}{dt} = \sum_i \frac{\partial^2 F}{\partial q_i \partial q_j} \dot{q}_i + \frac{\partial^2 F}{\partial t \partial q_j}$.

We also note that $\frac{d}{dt} \frac{\partial F}{\partial q_j} = \sum_i \frac{\partial^2 F}{\partial q_j \partial q_i} \dot{q}_i + \frac{\partial^2 F}{\partial q_j \partial t}$, so that really $\frac{\partial}{\partial q_j} \frac{dF}{dt} = \frac{d}{dt} \frac{\partial F}{\partial q_j}$.

The use of $\frac{\partial \dot{F}}{\partial \dot{q_i}} = \frac{\partial F}{\partial q_i}$ leads to

$$\frac{\partial L'}{\partial \dot{q}_i} = \frac{\partial L}{\partial \dot{q}_i} + \frac{\partial F}{\partial q_i}$$

$$\frac{\partial L'}{\partial \dot{q}_{i}} = \frac{\partial L}{\partial \dot{q}_{i}} + \frac{\partial F}{\partial q_{i}}$$

$$2) \frac{d}{dt} \left(\frac{\partial L'}{\partial \dot{q}_{i}} \right) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} + \frac{\partial F}{\partial q_{i}} \right) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) + \frac{d}{dt} \left(\frac{\partial F}{\partial q_{i}} \right)$$

3)
$$\frac{\partial L'}{\partial q_i} = \frac{\partial}{\partial q_i} \left(L + \frac{dF}{dt} \right) = \frac{\partial L}{\partial q_i} + \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right)$$
 we plug in 2), 3) into 1)

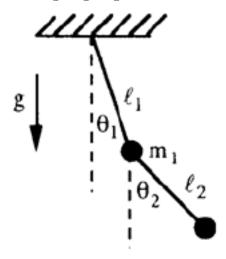
we plug in 2),
$$\theta$$
) into 1)
4) $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) - \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right)$
substituting $\frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) = \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right)$ into 4)

substituting
$$\frac{d}{dt} \left(\frac{\partial F}{\partial q_i} \right) = \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right)$$
 into 4)

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right) - \frac{\partial}{\partial q_i} \left(\frac{dF}{dt} \right) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$
which proves that

$$\frac{d}{dt} \left(\frac{\partial L'}{\partial \dot{q}_i} \right) - \frac{\partial L'}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

4. using Lagrangian we can find the equations of motion for the double pendulum



a) let's assume
$$q_1 = \theta_1$$
 and $q_2 = \theta_2$ $\overrightarrow{v_1} = l_1 \dot{\theta}_1 \hat{\theta}_1$ $v_1^2 = l_1^2 \dot{\theta}_1^2$

$$\begin{array}{l} \overrightarrow{v_2} = l_1\dot{\theta}_1\hat{\theta}_1 + l_2\dot{\theta}_2\hat{\theta}_2 \\ v_2^2 = l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_1\dot{\theta}_1 \cdot \dot{\theta}_2 \\ v_2^2 = l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_1\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) \\ T = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\left[l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2)\right] \\ U = -(gm_1l_1cos\theta_1 + gm_2l_1cos\theta_1 + gm_2l_2cos\theta_2) \\ L = T - U = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\left[l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2)\right] + (m_1 + m_2)gl_1cos(\theta_1) + m_2gl_2cos(\theta_2) \\ b) \\ \frac{\partial L}{\partial \theta_1} = m_1l_1^2\dot{\theta}_1 + m_2l_1^2\dot{\theta}_1 + m_2l_1l_2\dot{\theta}_2\cos(\theta_1 - \theta_2) \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \theta_1}\right) = l_1^2\ddot{\theta}_1(m_1 + m_2) + m_2l_1l_2\dot{\theta}_2\cos(\theta_1 - \theta_2) - m_2l_1l_2\dot{\theta}_2(\dot{\theta}_1 - \dot{\theta}_2)sin(\theta_1 - \theta_2) \\ \frac{\partial L}{\partial \theta_2} = m_2l_1l_2\dot{\theta}_1\dot{\theta}_2sin(\theta_1 - \theta_2) - (m_1 + m_2)gl_1sin(\theta_1) \\ \frac{\partial L}{\partial \theta_2} = m_2l_2^2\dot{\theta}_2 + m_2l_1l_2\dot{\theta}_1cos(\theta_1 - \theta_2) - m_2l_1l_2\dot{\theta}_1(\dot{\theta}_1 - \dot{\theta}_2)sin(\theta_1 - \theta_2) \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \theta_2}\right) = m_2l_2^2\ddot{\theta}_2 + m_2l_1l_2\ddot{\theta}_1cos(\theta_1 - \theta_2) - m_2l_1l_2\dot{\theta}_1(\dot{\theta}_1 - \dot{\theta}_2)sin(\theta_1 - \theta_2) \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \theta_2}\right) = m_2l_1^2\dot{\theta}_1\dot{\theta}_2sin(\theta_1 - \theta_2) - gm_2l_2sin\theta_2 \\ \text{First eq of motion is} \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \theta_1}\right) - \frac{\partial L}{\partial \theta_1} = 0 \\ l_1^2\ddot{\theta}_1(m_1 + m_2) + m_2l_1l_2\ddot{\theta}_2cos(\theta_1 - \theta_2) + m_2l_1l_2\dot{\theta}_2^2sin(\theta_1 - \theta_2) - m_2l_1l_2\dot{\theta}_2\dot{\theta}_1sin(\theta_1 - \theta_2) + m_2l_1l_2\dot{\theta}_1\partial_2sin(\theta_1 - \theta_2) + (m_1 + m_2)gl_1sin(\theta_1) \\ l_1\dot{\theta}_1(m_1 + m_2) + m_2l_1l_2\ddot{\theta}_2cos(\theta_1 - \theta_2) + m_2l_1l_2\dot{\theta}_2^2sin(\theta_1 - \theta_2) + (m_1 + m_2)gl_1sin(\theta_1) = 0 \\ \text{the second eq of motion is} \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \theta_2}\right) - \frac{\partial L}{\partial \theta_2} = 0 \\ 2 m_2l_2^2\ddot{\theta}_2 + m_2l_1l_2\ddot{\theta}_1cos(\theta_1 - \theta_2) - ml_1l_2\dot{\theta}_1^2sin(\theta_1 - \theta_2) + gm_2l_2sin\theta_2 = 0 \\ \text{these two equations are coupled equations} \end{aligned}$$

7. The Lagrangian for two particles of masses m_1 and m_2 and coordinates r_1 and r_2 that interact via a potential $V(\vec{r_1} - \vec{r_2})$ is

$$L = \frac{1}{2} m_1 |d \vec{r_1}/dt|^2 + \frac{1}{2} m_2 |d \vec{r_2}/dt|^2 - V(\vec{r_1} - \vec{r_2})$$

- a) Rewrite the Lagrangian in terms of the center of mass coordinates \hat{R} and relative coordinates $r=r_1$ r_2 .
- b) Use Lagrange's equations to show that the center of mass and relative motions separate, the center of mass moving with constant velocity and the relative motion being that of a particle of reduced mass $\eta = (m_1 \ m_2)/(m_1 + m_2)$ in a potential V(r).



It is assumed that we are working with vectors and can avoid using arrows notation.

$$r = r_1 - r_2$$

$$MR = m_1 r_1 + m_2 r_2$$

$$MR = m r_1 + m(r_1 - r)$$

$$MR = r_1(m_1 + m_2) - m_2 r$$

$$1) r = R + \frac{m_2}{M} r$$

$$MR = m_1(r_2 + r) + m_2 r_2$$

$$MR = r_2(m_1 + m_2) + m_1r$$

2)
$$r_2 = R - \frac{m_1}{M}r$$

2)
$$r_2 = R - \frac{m_1}{M}r$$

 $T = \frac{1}{2}(m_1\dot{r_1}^2 + m_2\dot{r_2}^2)$

$$(3)\dot{r_1}^2 = (\dot{R} + \frac{m_2}{M}\dot{r})^2$$

$$4)\dot{r_2}^2 = (\dot{R} - \frac{m_1}{M}\dot{r})^2$$

4) $\dot{r_2}^2 = (\dot{R} - \frac{m_1}{M}\dot{r})^2$ replace 3) and 4) in the kinetic energy

$$T = \frac{1}{2} \left[m_1 \left(\dot{R} + \frac{m_2}{M} \dot{r} \right)^2 + m_2 \left(\dot{R} - \frac{m_1}{M} \dot{r} \right)^2 \right]$$

$$m_1 \left(\dot{R} + \frac{m_2}{M} \dot{r} \right)^2 = m_1 \dot{R}^2 + \dot{r}^2 \frac{m_1 m_2^2}{M^2} + \frac{2m_1 m_2}{M} (\dot{R} \cdot \dot{r})$$

$$m_2(R - \frac{m_1}{M}r)^2 = m_2\dot{R}^2 + \dot{r}^2 \frac{m_2 m_1^2}{M^2} - \frac{2m_1 m_2}{M}(\dot{R} \cdot \dot{r})$$

$$T = \frac{1}{2} \left[\dot{R}^2(m_1 + m_2) + \dot{r}^2 \left(\frac{m_1 m_2}{M^2} \right) (m_1 + m_2) \right]$$

$$\mu = \left(\frac{m_1 m_2}{m_1 + m_2}\right)$$
 is the reduced mass

$$T = \frac{1}{2}\dot{M}R^2 + \frac{1}{2}\dot{\mu}r^2$$

finally the Lagrangian is

$$L = T - U$$

$$L = \frac{1}{2}\dot{M}\dot{R}^2 + \frac{1}{2}\mu\dot{r}^2 - U(r)$$

$$\partial L_{\dot{R}} = M\dot{R}$$

$$\partial L_R = 0$$

$$\frac{d}{dt}\left(\partial L_{\dot{R}}\right) = M\ddot{R}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{R}} \right) - \frac{\partial L}{\partial R} = 0$$

MR = 0 which means the velocity of the center of mass is a constant of the motion

$$\partial L_{\dot{r}} = \mu \dot{r}$$

$$\frac{d}{dt}\left(\partial L_{\dot{r}}\right) = \mu \ddot{r}$$

$$\partial^{n} L_{r} = -\partial U(r)$$

$$\mu \ddot{r} = -\partial U(r)$$

Like a particle of mass μ moving in a potential U(r) ______

6. A bead of mass m slides along a straight wire which makes an angle and rotates with constant angular velocity. Find the Lagrange's equations of motion.

Let's assume $q_1 = R$ and $q_2 = \theta$, where R is the displacement of the bead measured along the wire.

$$\dot{\theta} = \omega$$

$$T = \frac{1}{2}mv^2 = \frac{1}{2}m(\dot{R}^2 + \omega^2 R^2 \sin^2 \alpha)$$

$$U = mgR\cos\alpha$$

$$L = T - U = \frac{1}{2}m(\dot{R}^2 + \omega^2 R^2 \sin^2 \alpha) - mgR \cos \alpha$$

$$\begin{split} \partial L/\partial \dot{R} &= m\dot{R} \\ \frac{d}{dt}(\partial L/\partial \dot{R}) &= m\ddot{R} \\ \partial L/\partial R &= m\omega^2R\sin^2\alpha - mg\cos\alpha \\ \text{the eq of motion is:} \\ \frac{d}{dt}(\partial L/\partial \dot{R}) &- \partial L/\partial R = 0 \\ m\ddot{R} &- m\omega^2R\sin^2\alpha + mg\cos\alpha = 0 \end{split}$$

ALTERNATIVE: polar coords:

use
$$z = R \cos \alpha$$

$$L = \frac{1}{2}m(\frac{\dot{z}^2}{\cos^2 \alpha} + \omega^2 z^2 \tan^2 \alpha) - mgRz$$