
Numerical Relativity - PHY 6938

Solutions to HW 8

1. a) In this problem we are trying to solve the PDE ∂tu + ∂xu = 0. This is a single mode
with speed 1 moving to the right. I.e. on the left boundary (x = 0) we need to specify a
boundary condition to say what is coming in. On the right boundary (x = 1) nothing can
come in since the mode is moving to the right, so no BC is needed. In fact imposing one at
x = 1 may be incompatible with well-posedness and lead to instabilities.
Thus the program advection1.py is incorrect! It never changes the value of u at both
boundaries. The reason is that advection1.py uses D0 which simply does nothing at both
ends. This is the same as imposing the BCs u(0, t) = 0 and u(1, t) = sin(1). I.e. it imposes
BCs at both ends! If you run advection1.py you will see that u develops growing spikes
with the highest possible wavenumber of the grid. This is the hallmark of an instability,
which is caused by using an ill-posed method.
If we use Dp instead of D0 things get worse. Now we are imposing u(1, t) = sin(1) at the side
where there should be no BC, because Dp does nothing at the right side. But on the left
side we use ∂tu + ∂xu = 0 because there Dp works just fine. I.e. on the left side we are not
imposing a BC, even though we should.
If we use Dm instead of D0 the program works fine. Now we are using ∂tu + ∂xu = 0 on the
right side because Dm works well there. While on the left we are using u(0, t) = 0, because
we never change u there. Thus we get the case where the inital sinus function simply moves
to the right, and nothing is coming in.
b) We should impose a BC only on the left side at x = 0.
c) In order to obtain sin(x − t) we should impose u(0, t) = sin(−t) on the left side and set
the initial u to u(x, 0) = sin(x) (as done already).
d) The new modified program and its output at t = 1 is below:

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

0.0

0.5

u

u with correct BC: u(x=0,t) =−sint t=1

1

03/24/15 advection2.py 1

/sshfs/cosweb1.fau.edu/home/wolf/public_html/Teaching/2015_NumRel/advection2.py

import some packages
from __future__ import print_function
import numpy as np

########################
define some functions:
########################

right deriv
def Dp(u, dx, du):
 for i in range(0, len(u)-1):
 du[i] = (u[i+1] - u[i])/dx

left deriv
def Dm(u, dx, du):
 for i in range(1, len(u)):
 du[i] = (u[i] - u[i-1])/dx

centered deriv
def D0(u, dx, du):
 for i in range(1, len(u)-1):
 du[i] = (u[i+1] - u[i-1])/(2.0*dx)

RHS of $\partial_t u$
def eval_rhs(u, dx, du):
 Dm(u, dx, du)
 return -du

u(t+dt) = u(t) + \partial_t u * dt
def calc_unew(u, rhs, dt):
 return u + rhs * dt

nonsense BC at both ends
def set_BC_alt(u, dx, du, t, dt):
 u[0] = np.sin(-t)
 im = len(u)
 u[im-1] = np.sin(dx*(im-1) - t)

BC at the side x=0 where we have incoming modes
def set_BC(u, dx, du, t, dt):
 u[0] = np.sin(-t)

print colums with data at time t
def pr_timeframe(t, x, u):
 print("# time =", t)
 for i in range(0, len(u)):
 print(x[i], u[i])
 print()

###############
main program:
###############

grid: 11 points from 0 to 1, i.e. x[0]=0, ..., x[10]=1
x = np.linspace(0, 1, 11)
dx = x[1]-x[0] # grid spacing
dt = 0.5*dx # time step

du will contain deriv of u, initialze to 0
du = np.zeros(len(x))

initial u
t = 0.0
u = np.sin(x)
set_BC(u, dx, du, t, dt)
pr_timeframe(t, x, u)

timesteps = 20

03/24/15 advection2.py 2

/sshfs/cosweb1.fau.edu/home/wolf/public_html/Teaching/2015_NumRel/advection2.py

loop over time steps, and print results
for n in range(0, timesteps):
 # make time step, using simple Euler method
 t = t + dt
 rhs = eval_rhs(u, dx, du)
 u = calc_unew(u, rhs, dt)
 set_BC(u, dx, du, t, dt)
 # print colums with data
 pr_timeframe(t, x, u)

