
Numerical Relativity - PHY 6938

HW 9

Hand in this homework.

READ: Chap 7.

PROBLEMS:

1. The first law of thermodynamics is usually written as

dE = TdS − pdV + µdN

Here E is the total relativistic energy.
a) Define ρ := E/V , n := N/V , s := S/N = S/(V n). Calculate dρ in terms of ds and dn.
b) Calculate dρ in terms of ds and dρ0, where ρ0 is the rest mass density.

2. Consider a polytropic EoS
p = κρ

1+1/n
0

at T = 0. Note here n is the polytropic index.
a) Using this EoS express ρ0, ϵ and p in terms of h, n and κ. (Recall that h is given by
h = 1 + ϵ+ p/ρ0.)
HINT: Use T = 0 in the expression for dh to obtain an equation that you can integrate to
find h as a function of ρ0.
b) Express ρ0, ϵ and h in terms of p, n and κ.

3. Let us now consider a static spherically symmetric star. In this case the Einstein equations
can be solved exactly. The metric outside the star is given by the Schwarzschild metric

ds2 = −(1− 2m(r∗)/r)dt
2 + (1− 2m(r∗)/r)

−1dr2 + r2(dθ2 + sin2 θdφ2),

where r∗ is the star radius (in standard Schwarzschild coordinates) and

m(r) =

∫ r

0

dr′4πr′2ρ.

Inside the star the metric is given by

ds2 = −e2ϕdt2 + (1− 2m(r)/r)−1dr2 + r2(dθ2 + sin2 θdφ2),

where m(r), ϕ(r) and also p(r) are found by integrating the Tolman-Oppenheimer-Volkoff
(TOV) equations

dm

dr
= 4πr2ρ (1)

dp

dr
= −(ρ+ p)(m+ 4πr3p)/(r(r − 2m)) (2)

dϕ

dr
= (m+ 4πr3p)/(r(r − 2m)). (3)
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The TOV equations are ordinary differential equations that have to be integrated out from
r = 0 to the point where p = 0, which is the star surface location (r = r∗). At r = 0 we
start with m = 0 and some value of p = pc which determines the core pressure and thus the
total mass of the star. We also have to start with some particular ϕ at r = 0. We can set
this value to 1 at first. The final ϕ(r) can be obtained by adding a constant to it such that
2ϕ(r∗) = ln(1− 2m(r∗)/r∗). This shift in ϕ ensures that the metric is continuous at the star
surface.
a) Assume that the equation of state is

p = κρ
1+1/n
0

and that T = 0. Express ρ0 and ρ in terms of p.
b) Convince yourself that m(r) ≈ 4π

3
r3ρ for small r. Write the TOV equations for small r.

c) Write a program in Python (or optionally in C) that integrates the TOV equations.
Use units such that G = c = M⊙ = 1. To do so notice that for r = 0 the full TOV
equations contain terms that blow up. Use your result from b) for small r and the full TOV
equations for all other r. In order to get results quickly, use the simple Euler method for the
numerical integration (this can always be replaced by a Runge-Kutta integrator later if you
get ambitious).

Recall: The Euler method for an equation of the form ∂ru⃗ = f⃗(u⃗, r) simply is u⃗(rn+1) =

u⃗(rn) + f⃗(u⃗(rn), rn)∆r, where rn = n∆r. An example can be found in ODE_Euler.py where
the variable t is used instead of r.
d) Consider the EoS with κ = 123.6489 and n = 1 (in units such that G = c = M⊙ = 1).
Run your program with pc = 8× 10−4 and attach a plot of p(r).
[The command
tgraph.py -c 1:3 f.dat

will plot column 3 vs column 1 in file f.dat]
e) Run your program with different pc to approximately find the maximum m(r∗) that is
possible for the EoS with κ = 123.6489 and n = 1 (in units such that G = c = M⊙ = 1).
Note that stars with pc beyond the maximum are unstable.
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